
Computer Science and Engineering  College of Engineering  The Ohio State University

Git:
(Distributed) Version Control

Lecture 2

Computer Science and Engineering  The Ohio State University

The Need for Version Control

 Track evolution of a software artifact
 Development is often non-linear
 Older versions need to be supported
 Newer versions need to be developed

 Development is non-monotonic
 May need to undo some work, go back to an older version, or

track down when a mistake was introduced

 Facilitate team-based development
 Multiple developers working on a common code base
 How can project be edited simultaneously?

Computer Science and Engineering  The Ohio State University

Key Idea: A Repository
 Repository= working tree + store + index
 Warning: “Repo” often used (incorrectly) to mean just the store

or just the working tree
 Working tree = project itself
 Ordinary directory with files & subdirectories

 Store = history of project
 Hidden directory: don’t touch!

 Index = virtual snapshot
 Gateway for moving changes in the working tree into the store

(aka stage, cache)
 History = DAG of commits
 Each node in graph corresponds to a complete snapshot of the

entire project

Computer Science and Engineering  The Ohio State University

File Structure of a Repository
~/my-app/
├── css/
│ ├── buckeye-alert-resp.css
│ └── demo.css
├── demo-js.html
├── Gemfile
├── Gemfile.lock
├── .git/
│ ├── HEAD
│ ├── index
│ └── ...etc...
├── .gitignore
├── Rakefile
├── README.md
└── ...etc...

Computer Science and Engineering  The Ohio State University

Conceptual Structure

working tree
~/my-app/

store
~/my-app/.git/

wt

index
~/my-app/.git/index

ind

Computer Science and Engineering  The Ohio State University

A History of Commits

a b dc

working tree
~/my-app/

store
~/my-app/.git/

d's parent
is c

wt

commit b

revision β

𝛼 𝛽 𝛾 𝛿

index
~/my-app/.git/index

indtime

Computer Science and Engineering  The Ohio State University

Commit: Snapshot or Delta?
 A commit is simultaneously both

1. A complete snapshot of the project at that point in time
 aka a revision

2. A delta of the changes made
 aka a patch; the diff between two revisions

 Different git actions use different natures of a commit
 checkout: Commit is a thing (e.g., "version 1.2")
 show: Commit is a change (e.g., "fixes that bug")

 Clever data structures make both views available
efficiently
 Git objects (trees, blobs…) and references
 Merkle tree

Computer Science and Engineering  The Ohio State University

History is a DAG

 Every commit (except the first) has 1 or more
parents

a b gd

store

i

kf j

e

c

h

e has 1
parent

i has 2
parents

Initial commit
has no parents

Computer Science and Engineering  The Ohio State University

Example View of DAG

time

Computer Science and Engineering  The Ohio State University

Example View of DAG: ASCII Art

$ git log --oneline --no-decorate --graph

* 1618849 clean up css
* d579fa2 merge in improvements from master
|\
| * 0f10869 replace image-url helper in css
* | b595b10 add buckeye alert notes
* | a6e8eb3 add raw buckeye alert download
|/
* b4e201c wrap osu layout around content
* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md
* eb26605 initial commit

Computer Science and Engineering  The Ohio State University

Commit

 Each commit is identified by a hash
 160 bits (i.e., 40 hex digits)
 Practically guaranteed to be unique
 Can use short prefix of hash if unique

$ git show --name-only –-no-decorate
commit 16188493c252f6924baa17c9b84a4c1baaed438b
Author: Brutus Buckeye <brutus@users.noreply.github.com>
Date: Mon Mar 29 15:30:50 2023 +0200

clean up css

source/stylesheets/_site.css

Computer Science and Engineering  The Ohio State University

History is a DAG: With Prefixes

 A better picture would label each commit with its
hash (prefix)

eca7 96c9 c0a2d1bf 850a

512a8f59 a21adf2f

Computer Science and Engineering  The Ohio State University

History is a DAG: Simplified

 A better picture would label each commit with its
hash (prefix)

 But in these slides, we abbreviate the hash id's as
just: 'a', 'b', 'c'…

a b gd i

kf jc

Computer Science and Engineering  The Ohio State University

Nomenclature: Branch

 Branch: a pointer to a commit
 Not a “branch” in the DAG's shape

a b gd

store

i

kf jc

maint main rankings

Computer Science and Engineering  The Ohio State University

A Note on Naming Conventions

 Any name can be used for a branch
 Typically short, but hopefully descriptive
 Many branches, each with a unique name

 Initially, a repo has a single branch
 Default branch for many git commands
 Convention: use “main” as the name of this default branch
 Warning: Repos created locally use an old naming

convention (“master”) by default
 This default is user-configurable

init.defaultBranch main

Computer Science and Engineering  The Ohio State University

Nomenclature: HEAD

 HEAD: a special reference, (usually) points to a
branch

a b gd

store

i

kf jc

maint main rankings

HEAD

Computer Science and Engineering  The Ohio State University

Nomenclature: HEAD (Attached)

 Useful to think of HEAD as being “attached” to a
particular branch

a b gd

store

i

kf jc

maint rankingsmain

HEAD

Computer Science and Engineering  The Ohio State University

View of DAG with Branches

$ git log --oneline --graph --all

* 1618849 (HEAD -> main) clean up css
* d579fa2 (alert) merge in improvements from master
|\
| * 0f10869 replace image-url helper in css
* | b595b10 add buckeye alert notes
* | a6e8eb3 add raw buckeye alert download
|/
* b4e201c wrap osu layout around content
* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md
* eb26605 initial commit

Computer Science and Engineering  The Ohio State University

A “Clean” Repository

$ git status
On branch main
nothing to commit,

working directory clean

a b dc

wtmaint

𝛼 𝛽 𝛾 𝛿

𝛿

ind

δ

same
("wd clean")

same
("nothing
to commit")

main

HEAD

Computer Science and Engineering  The Ohio State University

Edit Files in Working Tree

 Add files, remove files, edit files…

a b dc

wt

now differs
from index

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD

Computer Science and Engineering  The Ohio State University

Edit Files in Working Tree: Check Status

 Add files, remove files, edit files…

$ git status
On branch main
Changes not staged for commit:

modified: css/demo.css

a b dc

wt

now differs
from index

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD

Computer Science and Engineering  The Ohio State University

Add: Working Tree  Index

$ git add . # current directory, and below

a b dc

wt

index = wt,
both differ
from HEAD

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

𝜺

main

HEAD

Computer Science and Engineering  The Ohio State University

Add: Working Tree  Index: Check Status

$ git add . # current directory, and below

$ git status
On branch main
Changes to be committed:

modified: css/demo.css

a b dc

wt

index = wt,
both differ
from HEAD

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

𝜺

main

HEAD

Computer Science and Engineering  The Ohio State University

Commit: Index  Store

$ git commit

parent is
old HEAD

a b dc e

new commit
added to store

Store changed!
DAG extended

HEAD advanced
(with attached branch!)

maint

𝛼 𝛽 𝛾 𝛿 𝜀

wt

unaffected
(but now
clean)

𝜀

ind

𝜀

main

HEAD

Computer Science and Engineering  The Ohio State University

The (New) State of Repository

a b dc e

maint

𝛼 𝛽 𝛾 𝛿 𝜀

wt

𝜀

ind

𝜀

main

HEAD

Computer Science and Engineering  The Ohio State University

Creating a New Branch

$ git branch fix

a b dc e

maint

𝜀𝛼 𝛽 𝛾 𝛿

fix

wt

𝜀

ind

𝜀

main

HEAD

Computer Science and Engineering  The Ohio State University

Checkout: Changing Branch (1)

$ git checkout fix

a b dc e

HEAD

maint

𝜀𝛼 𝛽 𝛾 𝛿

fix

HEAD
moved

wt

𝜀

ind

𝜀Store unaffected (apart from HEAD)
Same DAG, branches

main

Computer Science and Engineering  The Ohio State University

Checkout: Changing Branch (2)

$ git checkout maint

a b dc e

HEAD

maint

HEAD moved

𝜀𝛼 𝛽 𝛾 𝛿

fix

now same
as maint

ind

𝜷

wt

𝜷

main

 Advice: checkout <branch> only when wt is clean

Computer Science and Engineering  The Ohio State University

Edit Files in Working Tree: Different Branch

 Add files, remove files, edit files…

a b dc e

HEAD

maint

𝜀𝛼 𝛽 𝛾 𝛿

fix

now differs
from index

ind

𝛽

wt

𝜽

main

Computer Science and Engineering  The Ohio State University

Add & Commit: Update Store

$ git add .
$ git commit

a b dc e

HEAD

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

ind

wt

𝜃

𝜃
fix

main

Computer Science and Engineering  The Ohio State University

Merge: Bringing History together

 Bring work from another branch "into" current
branch
 Implemented features, fixed bugs, etc.

 Updates the current branch, not other
HEAD

othercurrent

HEAD

other current

Computer Science and Engineering  The Ohio State University

Merge – Case 1: Ancestor

 HEAD is an ancestor of other branch

a b dc e

𝜀𝛼 𝛽 𝛾 𝛿

HEAD

maint

wt

𝛽

main

Computer Science and Engineering  The Ohio State University

Fast-Forward Merge

$ git merge main

a b dc e

𝜀𝛼 𝛽 𝛾 𝛿

HEAD

maint

wt

𝜺

main

Computer Science and Engineering  The Ohio State University

Merge – Case 2: No Conflicts

a b dc e

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

wt

𝜀

main

HEAD

Computer Science and Engineering  The Ohio State University

Merge Automatically Commits

$ git merge maint

a b dc e

maint

f
g𝛼 𝛽 𝛾 𝛿

𝜃

𝜇

𝜀

wt

𝝁

main

HEAD

Computer Science and Engineering  The Ohio State University

Merge – Case 3: Conflicts Exist

$ git merge maint

a b dc e

wt ind
files that could
be merged
automatically

files with
conflicts
marked

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

𝜀′ 𝜀′′

main

HEAD

Computer Science and Engineering  The Ohio State University

Merge: Resolve Conflicts

$ gedit somefile

a b dc e

wt ind
files with
conflicts
resolved

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

𝜀′′𝝁

main

HEAD

Computer Science and Engineering  The Ohio State University

Merge with Conflicts: Add

$ git add somefile

a b dc e

wt ind

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

𝝁 𝝁

main

HEAD

Computer Science and Engineering  The Ohio State University

Merge with Conflicts: Commit

$ git commit

a b dc e

maint

f
g𝛼 𝛽 𝛾 𝛿

𝜃

𝜇

𝜀

wt ind

𝜇 𝜇

main

HEAD

Computer Science and Engineering  The Ohio State University

Merge: Edit to Resolve Conflicts

https://code.visualstudio.com/docs/sourcecontrol/overview

Computer Science and Engineering  The Ohio State University

Merge: 3-way Merge Editor

MS demo resolving merge conflicts:
youtube.com/watch?v=HosPml1qkrg https://code.visualstudio.com/docs/sourcecontrol/overview

Computer Science and Engineering  The Ohio State University

Summary: Git Intro

 Repository = working tree + store
 Store contains history
 History is a DAG of commits
 References, tags, and HEAD

 Commit/checkout are local operations
 Former changes store, latter working tree

 Merge
 Directional (merge other “into” HEAD)

