Git:

(Distributed) Version Control

Comy

Lecture 2

The Need for Version Contro

Computer Science and Engineering B The Ohio State University

1 Track evolution of a software artifact

B Development is often non-linear
O Older versions need to be supported
O Newer versions need to be developed

B Development is non-monotonic

O May need to undo some work, go back to an older version, or
track down when a mistake was introduced

1 Facilitate team-based development
B Multiple developers working on a common code base
B How can project be edited simultaneously?

Key Idea: A Repository

Computer Scie ineering M The Ohio State University

Repository= working tree + store + index
B Warning: "Repo” often used (incorrectly) to mean just the store
or just the working tree

Working tree = project itself
B Ordinary directory with files & subdirectories

Store = history of project

B Hidden directory: don’t touch!

Index = virtual snapshot

B Gateway for moving changes in the working tree into the store
(aka stage, cache)

History = DAG of commits

B Each node in graph corresponds to a complete snapshot of the
entire project

File Structure of a Repository

Computer Science and Engineering B The Ohio State University

~/my-app/
—— css/
— buckeye-alert-resp.css
L demo.css
—— demo-js.html
—— Gemfile
—— Gemfile.lock
—— .git/
—— HEAD
—— 1index
L .. .etc...
.gitignore
Rakefile

—— README .md
L . ..etc...

Conceptual Structure

Computer Science and Engineering B The Ohio State University

= working tree
wt ~/my-app/

store
~/my-app/.git/

ind
index
~/my-app/.git/index

A History of Commits

Computer Science and Engineering B The Ohio State University

commit b

d's parent

IS C = working tree
wi ~/my-app/

revision S

v
b

store
~/my-app/.git/

time > ind
index

~/my-app/.git/index

Commit: Snapshot or Delta?

A commit is simultaneously both

1. A complete snapshot of the project at that point in time
0 aka a revision

2. A delta of the changes made
O aka a patch; the diff between two revisions
Different git actions use different natures of a commit
B checkout: Commit is a thing (e.g., "version 1.2")
B show: Commit is a change (e.qg., "fixes that bug")

Clever data structures make both views available
efficiently

B Git objects (trees, blobs...) and references
B Merkle tree

History is a DAG

Computer Science and Engineering B The Ohio State University

O Every commit (except the first) has 1 or more

parents e has 1
parent

-

Initial commit
has no parents

| has 2
parents

store

Example View of DAG

Computer Science and Engineering B The Ohio State University

-

generate markdown without frontmatter 10 Aug 2025 09:06

D‘ dev-container

convert to md 9 Aug 2025 18:22

github/gh-pages | deploy: c883efa259b7b78c2c768259b93663a869c20c18 9 Aug 2025 16:25
create dev container 25 Jul 2025 14:29
fix broken library links: use learning.oreilly 8 Aug 2025 17:02

add-favicon ongin

2025.02.5U

add scrnipt to check whether h1 and title tags match 25 Jul 2025 11:34
exclude README from transfer to src 30 Jun 2025 23:47
fix page titles to match h1 headers 30 Jun 2025 17:15

use first h1 header in md as default page title 30 Jun 2025 16:03
use 11ty to generate website 26 Jun 2025 22:38

translate entire site to markdown, result in a subdir 26 Jun 2025 17:46

Example View of DAG: ASCII Art

Computer Science and Engineering B The Ohio State University

$ git log --oneline --no-decorate --graph

* 1618849 clean up css

o d579fa2 merge in improvements from master
I\

| * 0£10869 replace image-url helper in css

* | b595b10 add buckeye alert notes

* | a6e8eb3 add raw buckeye alert download

|/

* bde20lc wrap osu layout around content

* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md

* eb26605 initial commit

Commit

Computer Science and Engineering B The Ohio State University

O Each commit is identified by a hash
B 160 bits (i.e., 40 hex digits)
B Practically guaranteed to be unique
B Can use short prefix of hash if unique

S git show --name-only —-no-decorate

commit 16188493c252£f6924baal7c9b84a4d4clbaaed438b

Author: Brutus Buckeye <brutus@users.noreply.github.com>
Date: Mon Mar 29 15:30:50 2023 +0200

clean up css

source/stylesheets/ site.css

History is a DAG: With Prefixes

Co ineering M The Ohio State University

O A better picture would label each commit with its
hash (prefix)

History is a DAG: Simplified

Computer Science and Engineering B The Ohio State University

1 A better picture would label each commit with its
hash (prefix)

1 But in these slides, we abbreviate the hash id's as

just: 'a', 'b', 'c'...

Nomenclature: Branch

O Branch: a pointer to a commit
O Not a “branch” in the DAG's shape

[maint} [rankings}

store

A Note on Naming Conventions

Computer

1 Any name can be used for a branch
B Typically short, but hopefully descriptive
B Many branches, each with a unique name

1 Initially, a repo has a single branch
B Default branch for many git commands
B Convention: use "main” as the name of this default branch

B Warning: Repos created locally use an old naming
convention ("master”) by default

O This default is user-configurable
init.defaultBranch main

Nomenclature: HEAD

Computer Science and Engineering B The Ohio State University

O HEAD: a special reference, (usually) points to a
branch

| HEAD |

maint] rankings |

store

Nomenclature: HEAD (Attached)

B The Ohio State University

O Useful to think of HEAD as being “attached” to a
particular branch

| HEAD |

[maint} @i_n] [rankings}

store

View of DAG with Branches

Computer Science and Engineering B The Ohio State University

$ git log --oneline --graph --all

* 1618849 (HEAD ->) clean up css

* d579fa2 () merge in improvements from master
I\

| * 0£10869 replace image-url helper in css

* | b595bl0 add buckeye alert notes

* | a6e8eb3 add raw buckeye alert download

|/

* bde20lc wrap osu layout around content

* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md

* eb26605 initial commit

A "Clean” Repository

Computer Science and Engineering B The Ohio State University

)
| HEAD | =
maint main LJTLJ
maint man ,ﬁ
Same
("wd clean™)
5 ¢
$ glt status same C
On branch main ("nothing »«fﬂ\ﬂ}ljﬂ

nothing to commit, to Comm|t")
working directory clean

Edit Files in Working Tree

O Add files, remove files, edit files...

| HEAD |

main

Computer Science and Engineering B

&

]

[N
\
\
\
\

now differs
from index

ind

Edit Files in Working Tree: Check Status

Computer Science a

O Add files, remove files, edit files...

| HEAD | -

. . e |l
[mamt} main L%l
NOwW c‘Iiffers
from index

$ git status
On branch main ind
Changes not staged for commit:

modified: css/demo.css

Add: Working Tree = Index

S git add . # current directory, and below

| HEAD | = |
{maint} main L%l
index‘= wt,
both differ
from HEAD
e

ind

Computer Science and Engineering B The Ohio State Universi

Add: Working Tree - Index: Check Status

Com

S git add . # current directory, and below

| HEAD | -

[maint} [M WJ

A
1
1
1

index = wt,
both differ
from HEAD

&

<----

$ git status
On branch main ind
Changes to be committed:

modified: css/demo.css

Commit: Index = Store

S git commit

maint

Store changed!
DAG extended

Computer Science and Engineering B The Ohio State University

HEAD advanced
(with attached branch!)

S
~
S
~

new commit

added to store = J
M main w

unaffected
(but now
clean)

95]
R

parent is ind
old HEAD

The (New) State of Repository

Compu

Creating a New Branch

$ git branch fix

fix

ind

Checkout: Changing Branch (1)

S git checkout fix

Store unaffected (apart from HEAD)
Same DAG, branches L/UJ
HEAD]“

Checkout: Changing Branch (2

Computer Science and Engineering B The Ohio State University

S git checkout maint
HEAD moved

s
’
'
7’
’
,/
4

NOW Same
as maint

=
e

fi "
X ind

O Advice: checkout <branch> only when wt is clean

Edit Files in Working Tree: Different Branch

Comput

O Add files, remove files, edit files...

fix

now differs
from index

ind

Add & Commit: Update Stor

$ git add . [HEAD]

S git commit [maint]

Computer Science and Engineering B The Ohio St niversi

f.
X ind

Merge: Bringing History together

[| hio State University

Co

O Bring work from another branch "into" current
branch
B Implemented features, fixed bugs, etc.

O Updates the current branch, not other

| HEAD | | HEAD |
[current} [other} [other} [current}

T
|

Merge — Case 1: Ancestor

O HEAD is an ancestor of other branch

Computer Science and Engineering B

Fast-Forward Merge

S git merge main

| HEAD |
[maint} [main}

Merge — Case 2: No Conflict

| HEAD |

[maint} [M

Computer Science and Engineering B

Merge Automatically Commits

nd Engineering B The Ohio State Universi

S git merge maint [HEAD]

[maint} @i_n}

Merge — Case 3: Conflicts Exist

C

S git merge maint

[maint}

| HEAD |

main

files that could

files with L .
conflicts ----------- M ind |U€---—----—---- be merged

marked

automatically

Merge: Resolve Conflicts

$ gedit somefile [HEAD]

[maint} M

files with . £
conflicts ----------- M ind

resolved

Computer Science and Engineering B The Ohio State Universi

Merge with Conflicts: Add

$ git add somefile

| HEAD |

[maint} M

Computer Science and Engineering B The Ohio State Universi

Merge with Conflicts: Commit

Comp and Engineering B The Ohio State Universi

$ git commit [HEAD]

[maint} @i_n}

Merge: Edit to Resolve Conflicts

Computer Science and Engineering B The Ohio State University

<<<<<<< HEAD (Current Change)
. printMessage(showUsage, message)
console.log(message);

. printMessage(showUsage, showVersion) {

console.log("Welcome To Line Counter"
if (showVersion
console.log("Version: 1.0.0");

I

>>>>>>> theirs (Incoming Change)
if (showUsage
console.log("Usage: node base.js <filel> <file2> ...");

I Resolve in Merge Editor

Q You, 20 secondsago Ln11,Col26 Spaces:4 UTF-8 CRLF {} JavaScript &8 & 2

https://code.visualstudio.com/docs/sourcecontrol/overview

Merge: 3-way Merge Editor

s e B
merge-git-playground > 8 targetjs

Incoming @

printMessage(showUsage, showVersion)
console.log("Welcome To Line Counter");
if (showVersion) {
console.log("Version: 1.0.0");

if (showUsage) {
console.log("Usage: node base.js <filel>

Result mer

printHessageCshawUsagh)
console.log("Welcome To Line

if (showUsage) {
console.log("Usage: node

®mainl @ e '®0&u Not Logged In

MS demo resolving merge conflicts:
youtube.com/watch?v=HosPml1gkrg

Current @ b7b

Computer Science and Engineering B The Ohio State University

printMessage(showUsage, message) {
console.log(message);

if (showUsage) {
console.log("Usage: node base.js <filel

Complete Merge

Ln 17, Col 31 Spaces:4 CRLF {} JavaScript & &

https://code.visualstudio.com/docs/sourcecontrol/overview

Summary: Git Intro

[0 Repository = working tree + store
B Store contains history

B History is a DAG of commits

B References, tags, and HEAD

O Commit/checkout are local operations
B Former changes store, latter working tree

[0 Merge
B Directional (merge other “into” HEAD)

Computer Science and Engineering B

