Git:

Distributed Version Control

Computer Science a

Lecture 3

Demo: Add, Commit, Checkout, Merge

Com

Prep: Empty (but initialized) repo
Linear development:

B Create, edit, rename, Is -la files
B Git: add, status, commit, log

Checkout (time travel, detach HEAD)
Branch (re-attach HEAD)

More commits, see split in history
Merge

B No conflict
B Fast-forward

Playground: rcmarques3.qgithub.io/visualizing-git

What Does "D" Stand For?

Computer Science and Engineering B The Ohio State University

1 Distributed version control
B Multiple people, distributed across network

1 Each person has their own repository!

B Everyone has their own store (history)!
B Big difference with older VCS (eg SVN)

1 Units of data movement: changeset

B Communication between teammates is to bring stores in
Sync
B Basic operators: fetch and push

Sarah's Repository

Sarah

| HEAD |

main

And Matt's Repository

Sarah

Matt

Some Shared History

Sarah

Matt

| HEAD |

main

Fetch: Remote Store - Local

sarah$ git fetch mt [HEAD]
main
Sarah L____J ,
e
A
working
tree
unaffected!
E ,,,,, [mt/main]
el R
new commits
added to store remote-tracking

branch

Remote Repository Unchanged

Comp

| HEAD |

Matt _main |

Workflow: Merge After Fetch

sarah$ git merge mt/main

Sarah _main |

Remote Repository (Still) Unchanged

rsity

| HEAD |

Matt _main |

View of DAG with All Branches

Computer Science and Engineering B The Ohio State University

$ git log --oneline --graph # shows local & remote

* 1618849 (HEAD -> , origin/main) clean up css
* d579faz2 () merge in improvements from master
I\
| * 0£10869 replace image-url helper in css
* | b595b1l0 (origin/alert) add buckeye alert notes
| a6e8eb3 add raw buckeye alert download

*
I
* bde20lc wrap osu layout around content

* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md

* eb26605 initial commit

Your Turn

Computer Science and Engineering B The Ohio State University

O Show the state of Matt's repository after each of the
following steps

B Fetch (from Sarah)
B Merge

Sarah and Matt's Repositories

Co

| HEAD |

Sarah _main |

'HEAD | | mt/main |

Matt main

a «<— b «— f < g

(Still) Some Shared History

Computer Science and Engineering B

Sarah

Matt

| HEAD |

main

—

g

[mt/main]

Your Turn: Fetch

matt$ git fetch sr

Your Turn: Merge

Computer Science and Engineering B The Ohio State University

matt$ git merge sr/main

Demo: Fetch and Merge

O Playground:

B rcmarques3.qgithub.io/visualizing-qgit/#upstream-changes
O Try:

git commit

git fetch origin # see origin/feature

git merge origin/feature # see feature

Pull: Fetch then Merge

Computer Science and Engineering B The Ohio State University

O A pull combines both fetch & merge
matt$ git pull sr

O Advice: Prefer explicit fetch, merge

B After fetch, examine new work
S git log # see commit messages

S git checkout # see work

S git diff # compare
B Then merge

B Easier to adopt more complex workflows (e.g., rebasing
instead of merging)

Push: Local Store - Remote

Push sends local commits to remote store

Usually push one branch (at a time)
sarah$ git push mt
B Advances Matt's fix branch
B Advances Sarah's mt/fix remote-tracking branch
Requires:
1. Matt's fix branch must not be his HEAD
2. Matt's fix branch must be ancestor of Sarah's

Common practices:

1. Only push to bare repositories (bare means no working tree, ie
no HEAD)

2. Before pushing, get remote store's branch into local DAG (ie
fetch and merge?

Remote's Branch is Ancesto

Sarah

Matt

| HEAD |

main

Computer Science and Engineering B

| HEAD |

 mt/fix | | fix

—

d

€< €

fix

Push: Local Store > Remot

sarah$ git push mt fix

Sarah

d

Matt

| HEAD |

main

Computer Science and Engineering B The Ohio State Universi

| HEAD |

(mtfix | | fix

«<—— d €/ e
fix
< d

ty

Push: Local Store > Remote (After)

niversity

| HEAD |

sarah$ git push mt fix
fix | | mt/fix)

Sarah

a «— b €/ ¢ </ d <« e

working
tree
[HEAD] unaffected!
Matt main fix ‘\‘
¥

a «— b <« ¢ &« d <« e M

Commit/Checkout vs Push/Fetch

Computer Science and Engineering B The Ohio State University

Local Remote

Common Topology: Star

1 n-person team has n+1 repositories
B 1 shared central repository (bare!)
B 1 local repository / developer

1 Each developer clones central repository
B Creates (local) copy of (entire) central repo
B Local repo has a remote called “origin”
B Default source/destination for fetch/push

1 Variations for central repository:

B Everyone can read and write (ie push)

B Everyone can read, but only 1 person can write
(responsible for pulling and merging)

Computer Science and Engineering B The Ohio State Universi

Common Topology: Visualization of Star

-

i

alice |,
4—"’""0

A

!

Sourc

bob ,
4—""""0

~

e: http://nvie.co

/'

N

subteam
fetches

g Loy

subteam fetches

' . . ™
origin
//O

N

/'

d

| ™
Bare repository\

(no working tree)

m/posts/a-succes

sful-git-branching-model/

and io

- - “
david :
e/o

,/?‘o
A
subteam

fetches |
v,

- - ~
clair :
‘_/_,-C)
o \o

J

Summary: Distributed Git

Computer Science and Engineering B The Ohio State University

O Push/fetch to share your store with remote
repositories
B Neither working tree is affected

O Branches in history are easy to form
B Committing when HEAD is not a leaf
B Fetching work based on earlier commit

O Team coordination
B One single, central repo

B Every developer pushes/fetches from their (local) repo to
this central (remote) repo

