Git;
Advanced Topics

Lecture 4

Basic Workflow: Overview

1. Configure qgit locally (everyone, once)
2. Create central repo (1 person)
3. Create local repo (everyone)

4. Local development (everyone):
B Commit locally
B Fetch/merge as appropriate
B Push to share

Computer Science and Engineering B

Step 1: Configure Git Locall

Computer Science and Engineering B The Ohio State University

1 Each team member, on their own machine

B Required: Set identity for authoring commits
S git config --global user.name "Brutus Buckeye"
S git config --global user.email bb@osu.edu

B Recommend: set default initial branch name (2.28+)
S git config --global init.defaultBranch main
B TIips

O Add email to GitHub account (Settings > Email)

O Alternative: use GitHub-generated fake address:
B Settings > Email > Keep my address private
B Find ID+USERNAMEQusers.noreply.github.com

O Add your public SSH key to your GitHub account

Step 2: Initialize Central Re

Computer Science and Engineering B The Ohio State University

One person, once per project

Hosting services (GitHub, GitLab, BitBucket...) use a web
interface for this step

B In 3901, this will be done for you

No magic: any location ok, so long as the group can
access (e.g. coelinux):

B Create central repository in group's project directory
(/project/c3901aa03)

$ cd /project/c3901aal3
S mkdir projl # an ordinary directory

B Initialize directory as a bare git repository, with group
permissions

$ git init --bare --shared projl

Step 3: Create Local Repository

ring ® The Ohio State University

1 Each team member, once, on their machine
B Create local repo by cloning the central one
$ git clone gitRgithub.com:bb/projl.git
B Copies entire repo, including store, and sets a remote
called “origin”
$ cd projl
projl$ git remote -v # display info
origin git@github.com:bb/projl.git (fetch)
origin git@github.com:bb/projl.git (push)
1 Different ways to clone
B SSH
B HTTPS with Git Credential Manager

Step 4: Local Development

O Each team member repeats:
B Edit and commit (to local repository) often
$ git status/add/rm/commit
B Pull others' work when you can benefit
S git fetch origin # bring in changes
$ git log/checkout # examine new work
S git merge, commit # merge work

B Push to central repository when confident
S git push origin main # share

Computer Science and Engineering B

Demo: Local Development

Computer Science and Engineering B The Ohio State University

O Playground:

B rcmarques3.qgithub.io/visualizing-git/#upstream-changes
O Try:

git commit

git fetch origin # see origin/feature

git merge origin/feature # see feature

git push origin feature # see remote

Your Turn: Playing with Git

Computer Science and Engineering B The Ohio State University

1 Navigate to class org on GH and find the repo called
first-commits

1 Clone the repo to your machine

1 Do some development!
B Edit
B Inspect the store’s DAG
$ git log --graph --oneline --all
B Commit, fetch, merge, push...
B Rinse, repeat

Professional Git

1 Commit/branch conventions

1 Deciding what goes in, and what stays out of the
store
B Share all the things that should be shared
B Only share things that should be shared

1 Normalizing contents of the store
B Windows vs linux line endings

Commit/Branch Convention

Computer Science and Engineering B The Ohio State University

1 Team strategy for managing the DAG (ie the store)

1 Examples:

B “"Main is always deployable”

O All work is done on other branches, merged with main only
when result is executable

B “Feature branches”, “developer branches”

O Each feature developed on its own branch vs. each developer
works on their own branch

B “"Favor rebase over merge”
O Always append to latest origin/branch

Feature
for future

release

Example: Branch-Based Dev

release
feature

branches hotfixes

develop

branches

Computer Science and Engineering B The Ohio State University

master

Major Severe bug
feature for fixed for
next release production:
hotfix 0.2
Incorporate
bugfix in
develop
\O Tag
4 0.2
N Start of
release
\ branch for
From this point on,
“next release”
means the release
after 1.0 l
Only
bugfixes!
i Bugfixes from \ - Tag
rel. branch
» may be 1.0
continuously
A merged back
into develop

o

Example: Trunk-Based Dev

Computer Science and Engineering B The Ohio State University

release
ma‘StE‘r branches

Tirne

release-0.x

Savers bug
fized for
production

Feature
dewelopment
happens in
the master
branch

Chimy-pick
Bugfi= back
Lo FRARLEF

Fataings an
e mare
spcial than
iy ot
changes

Thasn are
Nl mere
COMITEES On
master, Only
EhaETY- Pk
and rebade
Fo=s i

Bugfizes are
continissushy

to and from

What Goes Into Central Repo?

Computer Science and Engineering B The Ohio State University

O Avoid private information
B Passwords, secret tokens
B Better: Use environment variables instead

O Avoid developer-specific environment settings
B Hard-coded file/directory paths from local machine

B OK to include a sample config (each developer customizes but keeps their version
out of store)

O Avoid living binaries (docx, pdf)
B Meaningless diffs
O Avoid generated files
B compiled files, the build
O Avoid IDE-specific files (.settings)

B Some generic ones are OK so it is easier to get started by cloning, especially if the
team uses the same IDE

O Agree on code formatting
B Auto-format is good, but only if everyone uses the same format settings!
B Spaces vs tabs, brace position, etc

Ignoring Files from Working Tree

[l

Use a .gitignore file in the root of project
B Committed as part of the project
B Consistent policy for everyone on team

Computer Science and Engineering B The Ohio State University

Examples: https://github.com/qgithub/gitignore

#
#

*

*

* * ok ok F ok I

github:gitignore/Java.gitignore
Compiled class file
.class

Log file
.log

Package Files #
.jar
.war
.ear
.Z1p
.tar.
.rar

gz

Problem: End-of-line Confusion

Comp ineering M The Ohio State University

Differences between OS's in how a new line is encoded in
a text file

B Windows: 2 bytes, CR + LF ("\r\n", O0xOD O0x0A)
B Unix/Mac: 1 byte, LF ("\n", Ox0A)
Difference is hidden by most editors

B An IDE might recognize either when opening a file, but convert
all to \r\n when saving

B Demo: hexdump (or VSCode hex editor)
But difference matters to git when comparing files!

Problem: OS differences within team
B Changing 1 line causes every line to be modified
B Flood of spurious changes masks the real edit

Solution: Normalization

Computer Science and Engineering B The Ohio State University

1 Convention: Store uses \n (ie linux)
B Working tree uses OS's native eol

B Convert when moving data between the two (e.g.,
commit, checkout)

1 Note: Applies to text files only

B A binary file, like a jpg, might contain 0xOD and/or 0OxO0A,
but they should never be converted

1 How does git know whether a file is text or binary?
B Heuristics: auto-detect based on contents
B Configuration: filename matches a pattern

Normalization With .gitattributes

Computer Science and Engineering B The Ohio State University

O Use a .gitattributes file in root of project
B Committed as part of the project
B Consistent policy for everyone on team
O Example:
Auto detect text files and perform LF normalization
* text=auto

These files are text, should be normalized (crlf=>1f)
* . java text
* . md text
* txt text
* classpath text
* . project text

These files are binary, should be left untouched
.class binary
*.jar binary

*

Ninja Git: Advanced Moves

Computer Science and Engineering B The Ohio State University

1 Temporary storage
stash

1 Undoing big and small mistakes in the working tree
reset, checkout

1 Undoing mistakes in store
amend

1 DAG surgery

rebase

Advanced: Temporary Storage

B The Ohio State University

Comp

O Say you have uncommitted work and want to look at
a different branch

O Checkout won't work! (Recall rule: "only checkout
when wt is clean") £

| HEAD | M

[maint] main

\
uncommited
changes

&

ind

Stash: Push Work Onto a Stack

$ git stash # repo now clean
$ git checkout ..etc.. # feel free to poke around

| HEAD | Ljﬁg,m

[maint} main [stash] P\\

Stash: Pop Work Off the Stack

Compu gineering ® The Ohio State University

$ git stash pop # restores state of wt/index

one-liner above equivalent to:
S git stash apply # restore wt and index
$ git stash drop # restore store €

| HEAD | Ljﬁg,m

. _ R
[mamt] |mam| .
uncommited
changes

ind

Advanced: Undoing Big Mistake

[

Computer Science and Engineering B The Ohio State University

Say you want to throw away all your uncommited
work

B ie "Roll back” to last commited state

Checkout HEAD won't work! £
| HEAD | ww
[maint} main ™ |
uncommited

changes

&

ind

Reset: Discarding Changes

Computer Science and Engineering B The Ohio State University

$ git reset --hard # updates wt to be HEAD

$ git clean —--dry-run # list untracked files

$ git clean —--force # remove untracked files
)

| HEAD | L:ﬁ&,m

R
[maint] | main | AN
replaced to be
same as HEAD

I
]

]

]

]

]

6 I

| \ 4

ind

Reset: Discarding Commits

Computer Science and Engineering B The Ohio State University

$ git reset --hard HEAD~1
no need to git clean, since wt was already clean

HEAD moved _
(and attached branch) ™ 14

replaced to be
same as
HEAD~1

I
/]
1
Y y

ind

now unreachable

Advanced: Undo Small Mistake

Computer Science and Engineering B The Ohio State University

O Say you want to throw away some of your
uncommited work

B Restore a file to last committed version

£
| HEAD | M
[maint} main R\

Edits to
README.md

ind

Advanced: Undo Small Mistakes (Checkout)

Computer Science a

$ git checkout -- README.md
-- means: rest is file/path (not branch)
git checkout README.md ok, if not ambiguous

README.md
matches 6

ind

The Power to Change Histor

Computer Science and Engineering B The Ohio State University

1 Changing the store lets us:
B Fix mistakes in recent commits
B Clean up messy DAGs to make history look more linear

1 Rule: Never change shared history

B Once something has been pushed to a remote repo (e.g.,
origin), do not change that part of the DAG

B So: A push is really a commitment!

Problem 1: Wrong Commit

Computer Science and Engineering B The Ohio State University

O Problem 1: Wrong or incomplete commit

4
| HEAD | wm

main
uncommited
» 5 changes
a € b

ind

Problem 1: Wrong Commit (2)

O Problem 1: Wrong or incomplete commit

Problem 1: Wrong Commit (3)

gineering M The Ohio State University

O Problem 1: Wrong or incomplete commit
B Oops! That wasn't quite right...

| HEAD | M
main R\

uncommited
changes

ind

Problem 1: Wrong Commit (4)

O Problem 1: Wrong or incomplete commit
B Oops! That wasn't quite right...
B Oops! That wasn’t quite right...

gineering M The Ohio State Universi

Problem 1: Wrong Commit (5)

O Problem 1: Wrong or incomplete commit
B Oops! That wasn't quite right...
B Oops! That wasn’t quite right...
B Oops! That wasn’t quite right... £

| HEAD | M
main P\\

clean

ind

gineering M The Ohio State Universi

Problem 1: Wrong Commit (6)

O Problem 1: Wrong or incomplete commit

77 \\

O Result: Lots of tiny “fix it”, “oops”, “retry” commits

&

| HEAD | M
main P\\

clean

ind

Soln: Repair Tip with Commit --amend

Comp ty

O Alternative: Change most recent commit(s)

uncommited
changes

ind

Repair Tip with Commit amend (After)

Computer Sci and Engineering B The Ohio State Univ

$ git add .
$ git commit —--amend —--no-edit
no-edit means keep the same commit message

ind

i Brand new commit,
different hash

Problem 2: Periodic Merging (1)

Compute

B The Ohio State University

O Problem 2: As an independent branch is being
developed, main also evolves

Problem 2: Periodic Merging (2)

Compute

B The Ohio State University

O Problem 2: As an independent branch is being
developed, main also evolves

| HEAD |

)
3
(D
-
C
—
3
]
>

Problem 2: Periodic Merging (3)

Compute

B The Ohio State University

O Problem 2: As an independent branch is being
developed, main also evolves

O Result: Need periodic merges of main with

(incomplete) branch
| HEAD |

main

MY
3
(D
-
C

—__J

Problem 2: Periodic Merging (4)

Compute

B The Ohio State University

O Problem 2: As an independent branch is being
developed, main also evolves

O Result: Need periodic merges of main with
(incomplete) branch

Problem 2: Periodic Merging (5)

Compute

B The Ohio State University

O Problem 2: As an independent branch is being
developed, main also evolves

O Result: Need periodic merges of main with
(incomplete) branch

Soln: DAG Surgery with Rebase

Compu

B The Ohio State University

O Alternative: Move commits to a different part of the
DAG

| HEAD |

[main J [menu}

Soln: DAG Surgery with Rebase (After)

Compu

$ git rebase main
merging menu into main is now a fast-forward

| HEAD |

M
3
@
-
___J
Y
3
(D
-
C
—__J

Git Clients and Hosting Services

Comp ring ® The Ohio State University

1 Recommend'n: Know the command line!

1 IDEs are helpful too
B VSCode, plus Git Graph extension

1 Lots of sites for hosting your repos:
B GitHub, GitLab, Bitbucket, SourceForge...
B See: git.wiki.kernel.org/index.php/GitHosting

1 These cloud services provide
B Storage space, account/access management
B Pretty web interface
B Issues, bug tracking
B Workflow (eg forks) to promote contributions from others

Clarity

Computer Science and Engineering B The Ohio State University

Warning: Academic Misconduct

Comp neering B The Ohio State University

GitHub is a very popular service
B New repos are public by default

B Even free plan allows unlimited private repo’s (and
collaborators)

B 3901 has an organization for your private repo’s and team
access

Other services (e.g. GitLab, Bitbucket) have similar
Issues

Public repo’s containing coursework can create academic
misconduct issues

B Problems for poster
B Problems for plagiarist

Summary: Advaced Git

O Workflow
B Fetch/push frequency

B Respect team conventions for how/when to use different
branches

O Central repo is a shared resource
B Contains common (source) code
B Normalize line endings and formats
O Advanced techniques
B Stash, reset, rebase
O Advice

B Learn by using the command line
B Beware academic misconduct

