
Computer Science and Engineering  College of Engineering  The Ohio State University

Git:
Advanced Topics

Lecture 4

Computer Science and Engineering  The Ohio State University

Basic Workflow: Overview

1. Configure git locally (everyone, once)
2. Create central repo (1 person)
3. Create local repo (everyone)
4. Local development (everyone):
 Commit locally
 Fetch/merge as appropriate
 Push to share

Computer Science and Engineering  The Ohio State University

Step 1: Configure Git Locally

 Each team member, on their own machine
 Required: Set identity for authoring commits
$ git config --global user.name "Brutus Buckeye"
$ git config --global user.email bb@osu.edu

 Recommend: set default initial branch name (2.28+)
$ git config --global init.defaultBranch main

 Tips
 Add email to GitHub account (Settings > Email)
 Alternative: use GitHub-generated fake address:
 Settings > Email > Keep my address private
 Find ID+USERNAME@users.noreply.github.com

 Add your public SSH key to your GitHub account

Computer Science and Engineering  The Ohio State University

Step 2: Initialize Central Rep
 One person, once per project
 Hosting services (GitHub, GitLab, BitBucket…) use a web

interface for this step
 In 3901, this will be done for you

 No magic: any location ok, so long as the group can
access (e.g. coelinux):
 Create central repository in group's project directory

(/project/c3901aa03)
$ cd /project/c3901aa03
$ mkdir proj1 # an ordinary directory
 Initialize directory as a bare git repository, with group

permissions
$ git init --bare --shared proj1

Computer Science and Engineering  The Ohio State University

Step 3: Create Local Repository

 Each team member, once, on their machine
 Create local repo by cloning the central one

$ git clone git@github.com:bb/proj1.git

 Copies entire repo, including store, and sets a remote
called “origin”
$ cd proj1
proj1$ git remote –v # display info
origin git@github.com:bb/proj1.git (fetch)
origin git@github.com:bb/proj1.git (push)

 Different ways to clone
 SSH
 HTTPS with Git Credential Manager

Computer Science and Engineering  The Ohio State University

Step 4: Local Development

 Each team member repeats:
 Edit and commit (to local repository) often
$ git status/add/rm/commit

 Pull others' work when you can benefit
$ git fetch origin # bring in changes
$ git log/checkout # examine new work
$ git merge, commit # merge work

 Push to central repository when confident
$ git push origin main # share

Computer Science and Engineering  The Ohio State University

Demo: Local Development

 Playground:
 rcmarques3.github.io/visualizing-git/#upstream-changes

 Try:
git commit
git fetch origin # see origin/feature
git merge origin/feature # see feature
git push origin feature # see remote

Computer Science and Engineering  The Ohio State University

Your Turn: Playing with Git

 Navigate to class org on GH and find the repo called
first-commits

 Clone the repo to your machine
 Do some development!
 Edit
 Inspect the store’s DAG

$ git log --graph --oneline --all

 Commit, fetch, merge, push…
 Rinse, repeat

Computer Science and Engineering  The Ohio State University

Professional Git

 Commit/branch conventions
 Deciding what goes in, and what stays out of the

store
 Share all the things that should be shared
 Only share things that should be shared

 Normalizing contents of the store
 Windows vs linux line endings

Computer Science and Engineering  The Ohio State University

Commit/Branch Conventions

 Team strategy for managing the DAG (ie the store)
 Examples:
 “Main is always deployable”
 All work is done on other branches, merged with main only

when result is executable
 “Feature branches”, “developer branches”
 Each feature developed on its own branch vs. each developer

works on their own branch
 “Favor rebase over merge”
 Always append to latest origin/branch

Computer Science and Engineering  The Ohio State University

Example: Branch-Based Dev

Computer Science and Engineering  The Ohio State University

Example: Trunk-Based Dev

Computer Science and Engineering  The Ohio State University

What Goes Into Central Repo?
 Avoid private information

 Passwords, secret tokens
 Better: Use environment variables instead

 Avoid developer-specific environment settings
 Hard-coded file/directory paths from local machine
 OK to include a sample config (each developer customizes but keeps their version

out of store)
 Avoid living binaries (docx, pdf)

 Meaningless diffs
 Avoid generated files

 compiled files, the build
 Avoid IDE-specific files (.settings)

 Some generic ones are OK so it is easier to get started by cloning, especially if the
team uses the same IDE

 Agree on code formatting
 Auto-format is good, but only if everyone uses the same format settings!
 Spaces vs tabs, brace position, etc

Computer Science and Engineering  The Ohio State University

Ignoring Files from Working Tree
 Use a .gitignore file in the root of project

 Committed as part of the project
 Consistent policy for everyone on team

 Examples: https://github.com/github/gitignore
github:gitignore/Java.gitignore
Compiled class file
*.class

Log file
*.log

Package Files
*.jar
*.war
*.ear
*.zip
*.tar.gz
*.rar

Computer Science and Engineering  The Ohio State University

Problem: End-of-line Confusion
 Differences between OS's in how a new line is encoded in

a text file
 Windows: 2 bytes, CR + LF ("\r\n", 0x0D 0x0A)
 Unix/Mac: 1 byte, LF ("\n", 0x0A)

 Difference is hidden by most editors
 An IDE might recognize either when opening a file, but convert

all to \r\n when saving
 Demo: hexdump (or VSCode hex editor)

 But difference matters to git when comparing files!
 Problem: OS differences within team
 Changing 1 line causes every line to be modified
 Flood of spurious changes masks the real edit

Computer Science and Engineering  The Ohio State University

Solution: Normalization

 Convention: Store uses \n (ie linux)
 Working tree uses OS's native eol
 Convert when moving data between the two (e.g.,

commit, checkout)
 Note: Applies to text files only
 A binary file, like a jpg, might contain 0x0D and/or 0x0A,

but they should never be converted
 How does git know whether a file is text or binary?
 Heuristics: auto-detect based on contents
 Configuration: filename matches a pattern

Computer Science and Engineering  The Ohio State University

Normalization With .gitattributes
 Use a .gitattributes file in root of project

 Committed as part of the project
 Consistent policy for everyone on team

 Example:
Auto detect text files and perform LF normalization
* text=auto

These files are text, should be normalized (crlf=>lf)
*.java text
*.md text
*.txt text
*.classpath text
*.project text

These files are binary, should be left untouched
*.class binary
*.jar binary

Computer Science and Engineering  The Ohio State University

Ninja Git: Advanced Moves

 Temporary storage
stash

 Undoing big and small mistakes in the working tree
reset, checkout

 Undoing mistakes in store
amend

 DAG surgery
rebase

Computer Science and Engineering  The Ohio State University

Advanced: Temporary Storage

 Say you have uncommitted work and want to look at
a different branch

 Checkout won't work! (Recall rule: "only checkout
when wt is clean")

a b dc

wt

uncommited
changes

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD

Computer Science and Engineering  The Ohio State University

Stash: Push Work Onto a Stack

$ git stash # repo now clean
$ git checkout …etc… # feel free to poke around

a b dc e

maint

𝛼 𝛽 𝛾 𝛿 𝜀

wt

clean

𝛿

ind

δ

stashmain

HEAD

Computer Science and Engineering  The Ohio State University

Stash: Pop Work Off the Stack

$ git stash pop # restores state of wt/index

one-liner above equivalent to:
$ git stash apply # restore wt and index
$ git stash drop # restore store

a b dc

wt

uncommited
changes

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD

Computer Science and Engineering  The Ohio State University

Advanced: Undoing Big Mistakes

 Say you want to throw away all your uncommited
work
 ie “Roll back” to last commited state

 Checkout HEAD won't work!

a b dc

wt

uncommited
changes

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD

Computer Science and Engineering  The Ohio State University

Reset: Discarding Changes

$ git reset --hard # updates wt to be HEAD
$ git clean –-dry-run # list untracked files
$ git clean –-force # remove untracked files

a b dc

maint

𝛼 𝛽 𝛾 𝛿

ind

δ

replaced to be
same as HEAD

wt

𝛿

main

HEAD

Computer Science and Engineering  The Ohio State University

Reset: Discarding Commits

$ git reset --hard HEAD~1
no need to git clean, since wt was already clean

a b dc

maint

𝛼 𝛽 𝛾 𝛿

ind

replaced to be
same as
HEAD~1

wt

𝜸

𝜸

HEAD moved
(and attached branch)

now unreachable

main

HEAD

Computer Science and Engineering  The Ohio State University

Advanced: Undo Small Mistakes

 Say you want to throw away some of your
uncommited work
 Restore a file to last committed version

a b dc

wt

Edits to
README.md

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD

Computer Science and Engineering  The Ohio State University

Advanced: Undo Small Mistakes (Checkout)

$ git checkout -- README.md
-- means: rest is file/path (not branch)
git checkout README.md ok, if not ambiguous

a b dc

wt

README.md
matches 𝛿

maint

𝛼 𝛽 𝛾 𝛿

𝜺’

ind

δ

main

HEAD

Computer Science and Engineering  The Ohio State University

The Power to Change History

 Changing the store lets us:
 Fix mistakes in recent commits
 Clean up messy DAGs to make history look more linear

 Rule: Never change shared history
 Once something has been pushed to a remote repo (e.g.,

origin), do not change that part of the DAG
 So: A push is really a commitment!

Computer Science and Engineering  The Ohio State University

Problem 1: Wrong Commit

 Problem 1: Wrong or incomplete commit

a b

𝛼 𝛽

ind

𝛽

wt

uncommited
changes

𝜸

main

HEAD

Computer Science and Engineering  The Ohio State University

Problem 1: Wrong Commit (2)

 Problem 1: Wrong or incomplete commit

a b c

𝛼 𝛽 𝛾

wt

clean

𝛾

ind

𝛾

main

HEAD

Computer Science and Engineering  The Ohio State University

Problem 1: Wrong Commit (3)

 Problem 1: Wrong or incomplete commit
 Oops! That wasn’t quite right…

a b c

𝛼 𝛽 𝛾

ind

𝛾

wt

uncommited
changes

𝜹

main

HEAD

Computer Science and Engineering  The Ohio State University

Problem 1: Wrong Commit (4)

 Problem 1: Wrong or incomplete commit
 Oops! That wasn’t quite right…
 Oops! That wasn’t quite right…

a b dc

𝛼 𝛽 𝛾 𝛿

wt

clean

𝛿

ind

𝛿

main

HEAD

Computer Science and Engineering  The Ohio State University

Problem 1: Wrong Commit (5)

 Problem 1: Wrong or incomplete commit
 Oops! That wasn’t quite right…
 Oops! That wasn’t quite right…
 Oops! That wasn’t quite right…

a b dc e

𝛼 𝛽 𝛾 𝛿 𝜀

wt

clean

𝜀

ind

𝜀

main

HEAD

Computer Science and Engineering  The Ohio State University

Problem 1: Wrong Commit (6)

 Problem 1: Wrong or incomplete commit
 Result: Lots of tiny “fix it”, “oops”, “retry” commits

a b dc e

𝛼 𝛽 𝛾 𝛿 𝜀

wt

clean

𝜀

ind

𝜀

main

HEAD

Computer Science and Engineering  The Ohio State University

Soln: Repair Tip with Commit --amend

 Alternative: Change most recent commit(s)

a b c

𝛼 𝛽 𝛾

ind

𝛾

wt

uncommited
changes

𝜹

main

HEAD

Computer Science and Engineering  The Ohio State University

Repair Tip with Commit –amend (After)

$ git add .
$ git commit –-amend –-no-edit

no-edit means keep the same commit message

a b

𝛼 𝛽

wt

clean

𝛿

ind

𝛿
f

𝛿

Brand new commit,
different hash

main

HEAD

Computer Science and Engineering  The Ohio State University

Problem 2: Periodic Merging (1)

 Problem 2: As an independent branch is being
developed, main also evolves

a b

HEAD

menumain

f

𝛼 𝛽

𝜃

Computer Science and Engineering  The Ohio State University

Problem 2: Periodic Merging (2)

 Problem 2: As an independent branch is being
developed, main also evolves

a b c

menu

f

𝛼 𝛽 𝛾

𝜃

HEAD

main

Computer Science and Engineering  The Ohio State University

Problem 2: Periodic Merging (3)

 Problem 2: As an independent branch is being
developed, main also evolves

 Result: Need periodic merges of main with
(incomplete) branch

a b c

menu

f

𝛼 𝛽 𝛾

𝜃

HEAD

main

Computer Science and Engineering  The Ohio State University

Problem 2: Periodic Merging (4)

 Problem 2: As an independent branch is being
developed, main also evolves

 Result: Need periodic merges of main with
(incomplete) branch

a b dc e

HEAD

main

f

𝛼 𝛽 𝛾 𝛿

𝜃

𝜀

g

κ

menu

Computer Science and Engineering  The Ohio State University

Problem 2: Periodic Merging (5)

 Problem 2: As an independent branch is being
developed, main also evolves

 Result: Need periodic merges of main with
(incomplete) branch

a b dc e

HEAD

main

f h

𝛼 𝛽 𝛾 𝛿

𝜃 𝜇

𝜀

g

κ

menu

Computer Science and Engineering  The Ohio State University

Soln: DAG Surgery with Rebase

 Alternative: Move commits to a different part of the
DAG

a b dc

f

𝛼 𝛽 𝛾 𝛿

𝜃

g

κ

menu

HEAD

main

Computer Science and Engineering  The Ohio State University

Soln: DAG Surgery with Rebase (After)

a b dc

f

𝛼 𝛽 𝛾 𝛿

𝜃

g

κ

menu

HEAD

main

$ git rebase main
merging menu into main is now a fast-forward

Computer Science and Engineering  The Ohio State University

Git Clients and Hosting Services

 Recommend'n: Know the command line!
 IDEs are helpful too
 VSCode, plus Git Graph extension

 Lots of sites for hosting your repos:
 GitHub, GitLab, Bitbucket, SourceForge…
 See: git.wiki.kernel.org/index.php/GitHosting

 These cloud services provide
 Storage space, account/access management
 Pretty web interface
 Issues, bug tracking
 Workflow (eg forks) to promote contributions from others

Computer Science and Engineering  The Ohio State University

Clarity

git != GitHub

Computer Science and Engineering  The Ohio State University

Warning: Academic Misconduct
 GitHub is a very popular service
 New repos are public by default
 Even free plan allows unlimited private repo’s (and

collaborators)
 3901 has an organization for your private repo’s and team

access
 Other services (e.g. GitLab, Bitbucket) have similar

issues
 Public repo's containing coursework can create academic

misconduct issues
 Problems for poster
 Problems for plagiarist

Computer Science and Engineering  The Ohio State University

Summary: Advaced Git
 Workflow
 Fetch/push frequency
 Respect team conventions for how/when to use different

branches
 Central repo is a shared resource
 Contains common (source) code
 Normalize line endings and formats

 Advanced techniques
 Stash, reset, rebase

 Advice
 Learn by using the command line
 Beware academic misconduct

