
Computer Science and Engineering  College of Engineering  The Ohio State University

Ruby:
Introduction, Basics

Lecture 5

Computer Science and Engineering  The Ohio State University

Sample Code Snippet
class UsersController < ApplicationController
before_action :logged_in_user, only: %i[edit, update]

def update
if @user.update(user_params)

redirect_to user_url(@user), notice: "Success."
else

render :edit, status: :unprocessable_entity
end

end

def user_params
params.require(:user).permit(:name, :email,

:password)
end

end

Computer Science and Engineering  The Ohio State University

Ruby vs Java: Similarities

 Imperative and object-oriented
 Classes and instances (ie objects)
 Inheritance

 Strongly typed
 Classes determine valid operations

 Some familiar operators
 Arithmetic, bitwise, comparison, logical

 Some familiar keywords
 if, then, else, while, for, class, new…

Computer Science and Engineering  The Ohio State University

But Ruby Looks Different

 Punctuation
 Omits ;’s and often ()’s on function calls
 Function names can end in ? or !

 New keywords and operators
 def, do..end, yield, unless
 ** (exp), =~ (match), <=> (spaceship)

 Rich core libraries
 Collections: Hashes, Arrays
 Strings and regular expressions
 Enumerators for iteration

Computer Science and Engineering  The Ohio State University

Deeper Differences As Well

 Interpreted (typically)
 Run a program directly, without compiling

 Dynamically typed
 Objects have types, variables don't

 Everything is an object
 C.f. primitives in Java

 Code can be passed into a function as a parameter
 Aside: Java also has this feature (“lambdas”)

Computer Science and Engineering  The Ohio State University

Compiling Programs

 Program = Text file
 Contains easy-to-understand statements like “print”, “if”,

“while”, etc.
 But a computer can only execute machine

instructions
 Instruction set architecture of the CPU

 A compiler translates the program (source code) into
an executable (machine code)
 Recall “Bugs World” from CSE 2231

 Examples: C, C++, Objective-C, Ada…

Computer Science and Engineering  The Ohio State University

Interpreting Programs

 An interpreter reads a program and executes it
directly

 Advantages
 Platform independence
 Read-eval-print loop (aka REPL)
 Reflection

 Disadvantages
 Speed
 Later error detection (i.e., at run time)

 Examples: JavaScript, Python, Ruby

Computer Science and Engineering  The Ohio State University

Combination of Both

 A language is not inherently compiled or interpreted
 A property of its implementation

 Sometimes a combination is used:
 Compile source code into an intermediate representation

(byte code)
 Interpret the byte code

 Examples of combination: Java, C#

Computer Science and Engineering  The Ohio State University

Ruby is (Usually) Interpretted

 REPL with Ruby interpreter, irb
$ irb
>> 3 + 4
=> 7
>> puts "hello world"
hello world
=> nil
>> def square(x) x**2 end
=> :square
>> square -4
=> 16

Computer Science and Engineering  The Ohio State University

Literals
 Numbers (Integer, Float, Rational, Complex)

83, 0123, 0x53, 0b1010011, 0b101_0011
123.45, 1.2345e2, 12345E-2, 2/3r, 4+3i

 Strings
 Delimeters " " and ' '
 Interpolation of #{…} occurs inside " " (but not ' ')

"Sum 6+3 is #{6+3}" is "Sum 6+3 is 9"
 Custom delimeters with %Q�…� and %q�…�

 Ranges
 0..4 is end inclusive (0, 1, 2, 3, 4)
 0...4 is end exclusive (0, 1, 2, 3)

 Arrays and hashes (later)

Computer Science and Engineering  The Ohio State University

Comments and Statements

 Single-line comments start with #
 Don't confuse it with string interpolation!

 Multi-line comments bracketed by
=begin
=end

 Must appear at beginning of line
 Every statement has a value result
 Convention: => to indicate this value

"Hi #{name}" + "!" #=> "Hi Liam!"
puts "Bye #{name}" #=> nil

Computer Science and Engineering  The Ohio State University

Operators
 Arithmetic: + - * / % **
 / is either ÷ or div, depending on operands
 Integer / (div) rounds towards -∞, not 0
 % is modulus, not remainder
1 / 3.0 #=> 0.3333333333333333
1 / 3 #=> 0 (same as Java)
-1 / 3 #=> -1 (not 0, differs from Java)
-1 % 3 #=> 2 (not -1, differs from Java)

 Bitwise: ~ | & ^ << >>
5 | 2 #=> 7 (ie 0b101 | 0b10)
13 ^ 6 #=> 11 (ie 0b1101 ^ 0b0110)
5 << 2 #=> 20 (ie 0b101 << 2)

Computer Science and Engineering  The Ohio State University

To Ponder: Rational Expressions

Evaluate

1/3 / 1/2

-1/3 / 1/2

1/3r / 1/2r

(1/3r) / (1/2r)

0.1 + 0.2 – 0.3

Computer Science and Engineering  The Ohio State University

Operators (Continued)

 Comparison: < > <= >= <=>
 Last one is so-called “spaceship operator”
 Returns -1/0/1 iff LHS is smaller/equal/larger than RHS

'cab' <=> 'da' #=> -1
'cab' <=> 'ba' #=> 1

 Logical: && || ! and or not
 Words have low precedence (below =)
 “do_this or do_that” idiom needs low-binding
x = crazy or raise 'problem'

Computer Science and Engineering  The Ohio State University

Pseudo Variables

 Objects
 self, the receiver of the current method (recall “this”

keyword in Java)
 nil, nothingness (recall null)

 Booleans
 true, false
 nil evaluates to false
 0 is not false, it is true just like 1 or -4!

 Specials
 __FILE__, the current source file name
 __LINE__, the current line number

Computer Science and Engineering  The Ohio State University

Significance in Names

 A variable's name affects semantics!
 Variable name determines its scope
 Local: start with lowercase letter (or _)
 Global: start with $
 Many pre-defined global variables exist, e.g.:
 $/ is the input record separator (newline)
 $; is the default field separator (space)

 Instance: start with @
 Class: start with @@

 Variable name determines mutability
 Constant: start with uppercase (Size) but idiom is to use

all upper case (SIZE)

Computer Science and Engineering  The Ohio State University

Basic Statements: Conditionals
 Classic structure

if (boolean_condition) [then]
...

else
...

end
 But usually omit ()'s and “then” keyword

if x < 10
puts 'small'

end
 if can also be a statement modifier

x = x + 1 if x < LIMIT
 Good for single-line body
 Good when statement execution is common case
 Good for positive conditions

Computer Science and Engineering  The Ohio State University

Variations on Conditionals

 Unless: equivalent to “if not…”
unless size >= 100

puts 'small'
end

 Do not use else with unless
 Do not use negative condition (unless !...)

 Can also be a statement modifier
x = x + 1 unless x >= LIMIT

 Good for: single-line body, positive condition
 Used for: Guard at beginning of method

raise 'negative argument' unless x >= 0

Computer Science and Engineering  The Ohio State University

Pitfalls with Conditionals
 Keyword elsif (not “else if”)

if x < 10
puts 'small'

elsif x < 20
puts 'medium'

else
puts 'large'

end
 If's do not create nested lexical scope

if x < 10
y = x

end
puts y # y is defined, but could be nil
puts z # NameError: undefined local var z

Computer Science and Engineering  The Ohio State University

Case Statements are General
[variable =] case expression
when nil
statements execute if the expr was nil

when value # e.g. 0, 'start'
statements execute if expr equals value

when type # e.g. String
statements execute if expr resulted in Type

when /regexp/ # e.g. /[aeiou]/
statements execute if expr matches regexp

when min..max
statements execute if the expr is in range

else
statements

end

Computer Science and Engineering  The Ohio State University

Basic Iteration: While and Until
 Classic loop structure

while boolean_condition [do]
…

end
 Can also be used as a statement modifier

work while awake
 until is equivalent to “while not…”

until i > count
…

end
 Can also be a used as a statement modifier

 Pitfall: Modified block executes at least once
sleep while is_dark # may not sleep at all
begin i = i + 1 end while i < MAX

always increments i at least once

Computer Science and Engineering  The Ohio State University

Functions
 Definition: keyword def

def foo(x, y)
return x + y

end
 Notice: no types in signature
 No types for parameters
 No type for return value

 But all functions return something
 Value of last statement is implicitly returned
 Convention: Omit explicit return statement

def foo(x, y)
x + y # last statement executed

end

Computer Science and Engineering  The Ohio State University

Function Calls
 Dot notation for method call

Math::PI.rationalize() # receiver is Math::PI
 Convention: Omit ()’s in function definitions with no

parameters
def launch() … end # bad
def launch … end # good

 Paren’s can be also be omitted in function calls!
Math::PI.rationalize
puts 'hello world'

 Convention: Omit for “keyword-like” calls
attr_reader :name, :age

 Note: needed when chaining
foo(13).equal? value

Computer Science and Engineering  The Ohio State University

Sample Snippet: Putting It All Together
class UsersController < ApplicationController
before_action :logged_in_user, only: %i[edit update]

def update
if @user.update(user_params)
redirect_to @user, notice: "Success."

else
render :edit, status: :unprocessable_entity

end
end

def user_params
params.require(:user).permit(:name, :email,

:password)
end

end

Computer Science and Engineering  The Ohio State University

Summary: Ruby Basics

 Ruby is a general-purpose, imperative, object-
oriented language

 Ruby is (usually) interpreted
 REPL

 Familiar flow-of-control and syntax
 Some new constructs (e.g., unless, until)
 Terse (e.g., optional parentheses, optional semicolons,

statement modifiers)

