Ruby:

Objects and Dynamic Types

Computer Science a

Lecture 6

Primitive vs Reference Type

Computer Science and Engineering B The Ohio State University

O Recall Java type dichotomy:

B Primitive: int, float, double, boolean,...

B Reference: String, Set, NaturalNumber,...
O A variable is a "slot” in memory

B Primitive: the slot holds the value itself
B Reference: the slot holds a pointer to the value (an object)

a d
W width: 12
[34 } [‘J 3 height: 15
color: "blue"

Object Value vs Reference Valu

Computer Science and Engineering B The Ohio State University

O Variable of reference type has both:
B Reference value: value of the slot itself

B Object value: value of object it points to (corresponding to
its mathematical value)

O Variable of primitive type has just one
B Value of the slot itself, corresponding to its mathematical

value
a d
W width: 12
[34 } [/N 3 height: 15
J color: "blue"

Two Kinds of Equality

O Question: "Is x equal to y?”
B A question about the mathematical value of the variables x
and y
O In Java, depending on the type of x and y we either
need to:
B Compare the values of the s/ots
X == // for primitive types
B Compare the values of the objects
x.equals(y) // for non-primitive types

Ruby: “"Everything is an Object”

ring ® The Ohio State University

In Ruby, every variable maps to an object
B Integers, floats, strings, sets, arrays, ...

Benefit: A more consistent mental model
B References are everywhere
B Every variable has both a reference value and an object value

B Comparison of mathematical values is always comparison of
object value

Ruby terminology: Reference value is called the object id
B The 8-byte number stored in the slot

B Unique identifier for corresponding object
tau = 6.28
tau.object id #=> 56565211319773434

Everything is an Object

width: 12

[A } >34 [/\ } > height: 15

color: "blue"

Everything is an Object (2)

o A

P

tau

Computer Science and Engineering B The Ohio St niversi

[56565211319773434}———)« 6.28

width: 12
height: 15
color: "blue"

>H true

>« <1,2,8,2>

Operational Detail: Immediates

nce and Engineering B The Ohio State University

For small integers, the mathematical value is encoded in
the reference valuel

B |LSB of reference value is 1

B Remaining bits encode value, 2's complement

x =0
x.object_id #=> 1 (0b00000001)
y = 6

y.object id #=> 13 (0b00001101)
Known as an "immediate” value
B Others: true, false, nil, symbols, small floats

Benefit: Performance
B No change to model, everything is an object

Objects Have Methods

Computer Science and Engineering B The Ohio State University

O Familiar "." operator to invoke (instance) methods
list = [6, 15, 3, -2]
list.size => 4

O Since numbers are objects, they have methods too!
3.to_s #=> "3"

3.o0dd? => true

3.1cm 5 #=> 15
1533.digits #=> [3, 3, 5, 1]
3.+ 5 #=> 8

3.class => Integer

3.methods => [:to s, :inspect, :+, ..]

Pitfall: Equality Operator

Computer Science and Engineering B The Ohio State University

Reference value is still useful sometimes
B "Do these variables refer to the same object?”

So we still need 2 methods:

X =Y
x.equal? y
Ruby semantics are the opposite of Javal
B == is object value equality
B .equal? is reference value equality
Example
al, a2 = [1, 2], [1, 2] # "same" array
al == a2 => true (obj values equal)

al.equal? a2 #=> false (ref values differ)

To Ponder: Equality Evaluation

Com

Evaluate (each is true or false):

3 ==
3.equal? 3
[3] == [3]

[3] .equal? [3]

Assignment (Just Like Java)

Computer Science and Engineering B The Ohio State University

O Assignment copies the reference value

O Result: Both variables point to the same object (ie an
alias)

O Parameter passing works this way too

Assignment (Just Like Java): Statement

Comp

O Assignment copies the reference value

O Result: Both variables point to the same object (ie an
alias)

O Parameter passing works this way too

<5, 1> <3, 4> <5, 1> <3, 4>

Aliasing Mutable Objects

Computer Science and Engineering B The Ohio State University

O When aliases exist, a statement can change a
variable’s object value without mentioning that
variable
x = [3, 4]

y = X # x and y are aliases

vy[0] = 13 # changes x as well!

O Question: What about numbers?
i = 34

j =i # i and j are aliases

J =3+ 1 # does change i as well?

Immutability

Computer Science and Engineering B The Ohio State University

Recall in Java strings are immutable
B No method changes the value of a string
B A method like concat returns a new instance

Benefit: Aliasing immutable objects is safe

Immutability is used in Ruby too

B Numbers, true, false, nil, symbols

list = [3, 4]

list[0] = 13 # changes list's object value
list points to same object

34

n + 1 # changes n's reference value
n points to different object

B Pitfall: Unlike Java, strings in Ruby are mutable

B But objects (including strings) can be “frozen”

n
n

Freezing

Computer Science and Engineering B The Ohio State University

O Makes a (single) object immutable
B The object value can not change
list = [1, 2, 8, 2].freeze
list.length #=> 4
list[0] = 3 # error: can't modify a frozen object

list = [7, -1] # ok: ref value changed

Frozen object
(shallow)

Assignment Operators

Computer Science and Engineering B The Ohio State University

Parallel assignment
X, Vv, 2z =y, 10, radius

Arithmetic contraction

B 4= —= *= /: L= **k=
m Pitfall: no ++ or -- operators (use += 1)
Logical contraction

B ||= &&=
B Idiom: | |= for initializing potentially nil variables
B Pitfall (minor):

O x | |= y not quite equivalentto x = x || y

O Better to thinkofitasx || x =y
O Usually amounts to the same thing

Declared vs Dynamic Types

i and Engineering B The Ohio State University

O In Java, types are associated W|th both
B Variables (declared / static type), and
B Objects (dynamic / run-time type)
Queue line = new QueuellL() ;

O Recall: Programming to the interface

O Compiler uses declared type for checks
line.inc () ; // error: no such method

line = new SetlL(); // error: wrong type

boolean isEmpty (Set s) {..}
if isEmpty(line) .. // error: wrong argument type

Statically Typed Language

<1, 2, 8, 2>
QueuellL
"hello"
String
width: 12
> height: 15
color: "blue"

Rectangle

Dynamically Typed Languag

[‘} <1, 2, 8, 2>

QueuellL

msg

[k} "hello"
String

d

W width: 12

[/N J > height: 15
color: "blue”
Rectangle

Computer Science and Engineering B

Dynamically Typed Language: Definition

Com

1 Equivalent definitions:
B No static types
B Dynamic types only
B Variables do not have type, objects do

Function Signatures

Computer Science and Engineering B The Ohio State University

Statically typed
String parse(char[] s, int i) {.. return e;}
out = parse(t, x);

B Declare parameter and return types
0 See s, i, and parse

B The compiler checks conformance of
O (Declared) types of arguments (t, x)
O (Declared) type of return expression (e)
O (Declared) type of expression using parse (out)

Dynamically typed

def parse(s, 1) .. e end

out = parse t, x
B You are on your own!

Type Can Change at Run-time

Computer Science and Engineering B The Ohio State University

Statically Typed Dynamically Typed

// a is undeclared # a is undefined
String a; a = a

// a is a null string # a is nil
a = "hi; a = "hi

// compile-time error # load-time error
a = "hi"; a = "hai"
a = 3; a=3

// compile-time error # a is now a number
a.push() ; a.push

// compile-time error # run-time error

Changing Dynamic Type

line

[‘ } <1, 2, 8, 2>
QueuellL

msqg

[k} "hello"

String

Changing Dynamic Type: Assignment

ity

Computer Science an

msg, line = line, msg

line

[A } <1, 2, 8, 2>
Queuell

msg

[A } "hello"

String

Changing Dynamic Type: Result

Computer S

msg, line = line, msg
line line
[‘ J <1, 2,8, 2> [A} <1, 2, 8, 2>
QueuellL QueuellL
msg msg

[k} "hello” [X } _nello”

String String

Arrays: Static Typing

msg

~

~

A

"hello"

String

String

String msg = "hello";

Arrays: Static Typing (2)

Computer Science and Engineering B The Ohio State University

- N String msg = "hello";
A "hello”
—— String
String String[] msgs = ["hello",
"world",
.17
msgs
A—— A A
String|] Sy{’ing Stri\g String\Atring
She”O "WOI"ld" IIhi therell
trin :
ring String String

Arrays: Dynamic Typing

Computer Science and Engineering B The Ohio State University

=9 msg = "hello";
k) n n
J hello
String
msgs = ["hello",
"world",
.
msgs
A A A A4
Sr;e-llo "world" "hi there"
ring String String

Consequence: Heterogeneit

Computer Science a nd Engineering B

msgs = ["hello",

3.14,
... 1

msgs

AT A A AL

"hello"
String

3.14 17
Float Integer

Tradeoffs

Statically Typed Dynamically Typed
Earlier error detection Less code to write
Clearer APIs Less code to change
More compiler optimizations Quicker prototyping
Richer IDE support No casting needed

Strongly Typed

Computer Science and Engineering B The Ohio State University

Just because variables do not have types, does not mean
any operation is allowed!

>> m = 'hi'

>> m.upcase

=> "HI"

>> m.odd?

undefined method odd?' for an instance of a String
(NoMethodError)

>> puts 'The value of x i1is ' + x

No implicit conversion of Integer into String
(TypeError)

B String interpolation implicitly calls to_s
>> puts "The value of x is #{x}"

Summary: Objects and Dynamic Types

Com

[0 Object-oriented
B References are everywhere
B Assignment copies reference value (alias)
B Primitives (immediates) are objects too
B == vs .equal? are flipped
O Dynamically type
B Objects have types, variables do not
O Strongly Typed
B Incompatible types produce (run time) error

