
Computer Science and Engineering  College of Engineering  The Ohio State University

Ruby:
Objects and Dynamic Types

Lecture 6

Computer Science and Engineering  The Ohio State University

Primitive vs Reference Types

 Recall Java type dichotomy:
 Primitive: int, float, double, boolean,…
 Reference: String, Set, NaturalNumber,…

 A variable is a “slot” in memory
 Primitive: the slot holds the value itself
 Reference: the slot holds a pointer to the value (an object)

d
width: 12
height: 15
color: "blue"

34

a

Computer Science and Engineering  The Ohio State University

Object Value vs Reference Value

 Variable of reference type has both:
 Reference value: value of the slot itself
 Object value: value of object it points to (corresponding to

its mathematical value)
 Variable of primitive type has just one
 Value of the slot itself, corresponding to its mathematical

value

d
width: 12
height: 15
color: "blue"

34

a

Computer Science and Engineering  The Ohio State University

Two Kinds of Equality

 Question: “Is x equal to y?”
 A question about the mathematical value of the variables x

and y
 In Java, depending on the type of x and y we either

need to:
 Compare the values of the slots
x == y // for primitive types

 Compare the values of the objects
x.equals(y) // for non-primitive types

Computer Science and Engineering  The Ohio State University

Ruby: “Everything is an Object”
 In Ruby, every variable maps to an object
 Integers, floats, strings, sets, arrays, …

 Benefit: A more consistent mental model
 References are everywhere
 Every variable has both a reference value and an object value
 Comparison of mathematical values is always comparison of

object value
 Ruby terminology: Reference value is called the object id
 The 8-byte number stored in the slot
 Unique identifier for corresponding object
tau = 6.28
tau.object_id #=> 56565211319773434

Computer Science and Engineering  The Ohio State University

Everything is an Object

d
width: 12
height: 15
color: "blue"

a

34

Computer Science and Engineering  The Ohio State University

Everything is an Object (2)

d
width: 12
height: 15
color: "blue"

a

34

"shark"
true

<1,2,8,2>

list

done

tau

6.2856565211319773434

msg

Computer Science and Engineering  The Ohio State University

Operational Detail: Immediates
 For small integers, the mathematical value is encoded in

the reference value!
 LSB of reference value is 1
 Remaining bits encode value, 2's complement

x = 0
x.object_id #=> 1 (0b00000001)
y = 6
y.object_id #=> 13 (0b00001101)

 Known as an “immediate” value
 Others: true, false, nil, symbols, small floats

 Benefit: Performance
 No change to model, everything is an object

Computer Science and Engineering  The Ohio State University

Objects Have Methods

 Familiar "." operator to invoke (instance) methods
list = [6, 15, 3, -2]
list.size #=> 4

 Since numbers are objects, they have methods too!
3.to_s #=> "3"
3.odd? #=> true
3.lcm 5 #=> 15
1533.digits #=> [3, 3, 5, 1]
3.+ 5 #=> 8
3.class #=> Integer
3.methods #=> [:to_s, :inspect, :+, …]

Computer Science and Engineering  The Ohio State University

Pitfall: Equality Operator
 Reference value is still useful sometimes
 “Do these variables refer to the same object?”

 So we still need 2 methods:
x == y
x.equal? y

 Ruby semantics are the opposite of Java!
 == is object value equality
 .equal? is reference value equality

 Example
a1, a2 = [1, 2], [1, 2] # "same" array
a1 == a2 #=> true (obj values equal)
a1.equal? a2 #=> false (ref values differ)

Computer Science and Engineering  The Ohio State University

To Ponder: Equality Evaluation

Evaluate (each is true or false):

3 == 3

3.equal? 3

[3] == [3]

[3].equal? [3]

Computer Science and Engineering  The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value
 Result: Both variables point to the same object (ie an

alias)
 Parameter passing works this way too

a b

<5, 1> <3, 4>

Computer Science and Engineering  The Ohio State University

Assignment (Just Like Java): Statement

 Assignment copies the reference value
 Result: Both variables point to the same object (ie an

alias)
 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>

Computer Science and Engineering  The Ohio State University

Aliasing Mutable Objects

 When aliases exist, a statement can change a
variable’s object value without mentioning that
variable
x = [3, 4]
y = x # x and y are aliases
y[0] = 13 # changes x as well!

 Question: What about numbers?
i = 34
j = i # i and j are aliases
j = j + 1 # does change i as well?

Computer Science and Engineering  The Ohio State University

Immutability
 Recall in Java strings are immutable
 No method changes the value of a string
 A method like concat returns a new instance

 Benefit: Aliasing immutable objects is safe
 Immutability is used in Ruby too
 Numbers, true, false, nil, symbols
list = [3, 4]
list[0] = 13 # changes list's object value

list points to same object
n = 34
n = n + 1 # changes n's reference value

n points to different object
 Pitfall: Unlike Java, strings in Ruby are mutable
 But objects (including strings) can be “frozen”

Computer Science and Engineering  The Ohio State University

Freezing

 Makes a (single) object immutable
 The object value can not change
list = [1, 2, 8, 2].freeze
list.length #=> 4
list[0] = 3 # error: can't modify a frozen object
list = [7, -1] # ok: ref value changed

list

<1, 2, 8, 2>

Frozen object
(shallow)

Computer Science and Engineering  The Ohio State University

Assignment Operators
 Parallel assignment

x, y, z = y, 10, radius

 Arithmetic contraction
 += -= *= /= %= **=
 Pitfall: no ++ or -- operators (use += 1)

 Logical contraction
 ||= &&=
 Idiom: ||= for initializing potentially nil variables
 Pitfall (minor):

 x ||= y not quite equivalent to x = x || y
 Better to think of it as x || x = y
 Usually amounts to the same thing

Computer Science and Engineering  The Ohio State University

Declared vs Dynamic Types

 In Java, types are associated with both
 Variables (declared / static type), and
 Objects (dynamic / run-time type)
Queue line = new Queue1L();

 Recall: Programming to the interface
 Compiler uses declared type for checks

line.inc(); // error: no such method
line = new Set1L(); // error: wrong type

boolean isEmpty (Set s) {…}
if isEmpty(line) … // error: wrong argument type

Computer Science and Engineering  The Ohio State University

Statically Typed Language

d
width: 12
height: 15
color: "blue"

msg

"hello"

<1, 2, 8, 2>

line

Queue Queue1L

String String

Shape
Rectangle

Computer Science and Engineering  The Ohio State University

Dynamically Typed Language

d
width: 12
height: 15
color: "blue"

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

Rectangle

Computer Science and Engineering  The Ohio State University

Dynamically Typed Language: Definition

 Equivalent definitions:
 No static types
 Dynamic types only
 Variables do not have type, objects do

Computer Science and Engineering  The Ohio State University

Function Signatures
 Statically typed

String parse(char[] s, int i) {… return e;}
out = parse(t, x);

 Declare parameter and return types
 See s, i, and parse

 The compiler checks conformance of
 (Declared) types of arguments (t, x)
 (Declared) type of return expression (e)
 (Declared) type of expression using parse (out)

 Dynamically typed
def parse(s, i) … e end
out = parse t, x

 You are on your own!

Computer Science and Engineering  The Ohio State University

Type Can Change at Run-time

Statically Typed
// a is undeclared

String a;
// a is a null string

a = "hi;
// compile-time error

a = "hi";
a = 3;

// compile-time error
a.push();

// compile-time error

Dynamically Typed
a is undefined

a = a
a is nil

a = "hi
load-time error

a = "hi"
a = 3

a is now a number
a.push

run-time error

Computer Science and Engineering  The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

Computer Science and Engineering  The Ohio State University

Changing Dynamic Type: Assignment

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg, line = line, msg

Computer Science and Engineering  The Ohio State University

Changing Dynamic Type: Result

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg, line = line, msg

Computer Science and Engineering  The Ohio State University

Arrays: Static Typing

msg

"hello"

String String

String msg = "hello";

Computer Science and Engineering  The Ohio State University

Arrays: Static Typing (2)

msg

"hello"

String String

msgs

String[] String String String String

"hello"
String

"world"
String

"hi there"
String

String msg = "hello";

String[] msgs = ["hello",
"world",
...];

Computer Science and Engineering  The Ohio State University

Arrays: Dynamic Typing

msg

"hello"
String

msgs

"hello"
String

"world"
String

"hi there"
String

msg = "hello";

msgs = ["hello",
"world",
...];

Computer Science and Engineering  The Ohio State University

Consequence: Heterogeneity

msgs

"hello"
String

3.14
Float

17
Integer

msgs = ["hello",
3.14,
...];

Computer Science and Engineering  The Ohio State University

Tradeoffs

Statically Typed
 Earlier error detection
 Clearer APIs
 More compiler optimizations
 Richer IDE support

Dynamically Typed
 Less code to write
 Less code to change
 Quicker prototyping
 No casting needed

Computer Science and Engineering  The Ohio State University

Strongly Typed
 Just because variables do not have types, does not mean

any operation is allowed!
>> m = 'hi'
>> m.upcase
=> "HI"
>> m.odd?
undefined method `odd?' for an instance of a String
(NoMethodError)
>> puts 'The value of x is ' + x
No implicit conversion of Integer into String
(TypeError)
 String interpolation implicitly calls to_s
>> puts "The value of x is #{x}"

Computer Science and Engineering  The Ohio State University

Summary: Objects and Dynamic Types

 Object-oriented
 References are everywhere
 Assignment copies reference value (alias)
 Primitives (immediates) are objects too
 == vs .equal? are flipped

 Dynamically type
 Objects have types, variables do not

 Strongly Typed
 Incompatible types produce (run time) error

