
Computer Science and Engineering  College of Engineering  The Ohio State University

Ruby:
Blocks, Enumeration, Hashes

Lecture 8

Computer Science and Engineering  The Ohio State University

Blocks

 A block is a statement(s) passed in as an argument
to a function

5.times do
puts 'hello world'

end

 Equivalent, but more succinct:
5.times { puts 'hello world' }

 A block can, itself, have parameters!
5.times { |n| puts n**2 }

 Method calls block, passing in arguments

Computer Science and Engineering  The Ohio State University

Calling Blocks

 Within a function, the passed-in block is called with
keyword “yield”
def fib_up_to(max)

i1, i2 = 1, 1
while i1 <= max

yield i1 if block_given?
i1, i2 = i2, i1 + i2

end
end
fib_up_to(1000) { |f| print "#{f} " }
fib_up_to(1000) { |f| sum += f }

Computer Science and Engineering  The Ohio State University

Idioms for Blocks

 Bracketed code (eg open, do stuff, close)
File.open('notes.txt', 'w') do |file|

file << 'work on 3901 project'
end # open method also closes the file after block

 Nested scope (eg for initialization code)
agent = Mechanize.new do |a|
a.log = Logger.new ('log.txt')
a.user_agent_alias = 'Mac Safari'

end # isolates agent’s initialization code

 Iteration (very common)…

Computer Science and Engineering  The Ohio State University

Simple Iteration
 While/until loop: Boolean condition

while boolean_condition
…

end
 For-in loop: iterate over arrays (and other things like

ranges)
for var in array
…

end
 Example
for str in 'hi'..'yo'

puts str.upcase
end
 Usually avoided (rubystyle.guide/#no-for-loops)

Computer Science and Engineering  The Ohio State University

Iterating on Arrays Using Blocks
 Do something with every element

a.each { |str| puts str.upcase }
 Do something with every index

a.each_index { |i| print "#{i}--" }
 Fill array with computed values

a.fill { |i| i * i } #=> [0, 1, 4, 9, 16]
a.fill { |i| [] } # can omit parameter i: { |_| [] }

 Search
a.index { |x| x > limit }

 Filter
a.select! { |v| v =~ /[aeiou]/ }
a.reject! { |v| v =~ /[aeiou]/ } # aka filter

 Sort
a.sort! { |x, y| x.length <=> y.length }

Computer Science and Engineering  The Ohio State University

Map

 Transform an array into a new array, element by
element

 Uses block to calculate each new value
a.map { |item| block } # +/- !

a

resulting
array

item

block

Computer Science and Engineering  The Ohio State University

Map: Examples
names = %w{ali noah marco xi}

#=> ["ali", "noah", "marco", "xi"]
names.map { |name| name.capitalize }
#=> ["Ali", "Noah", "Marco", "Xi"]

names.map { |name| name.length }
#=> [3, 4, 5, 2]

[1, 2, 3, 4].map { |i| i**2 }
#=> [1, 4, 9, 16]

[1, 2, 3, 4].map { |i| "x^#{i}" }
#=> ["x^1", "x^2", "x^3", "x^4"]

Computer Science and Engineering  The Ohio State University

Reduce

 Transform an array into a single value, by
incorporating one element at a time
 Also called “fold”, or “inject”

 Uses block with 2 arguments: current accumulation
and next array element
a.reduce(init) { |acc, item| block }
 Value returned by block is the next acc
 a[0] is initial acc, if init not provided

 Example: Sum the values of an array
 [15, 10, 8]  0 + 15 + 10 + 8  33

Computer Science and Engineering  The Ohio State University

Reduction Chain

a

resulting
value

item

block

acc

init

Computer Science and Engineering  The Ohio State University

Reduce: Examples
[3, 4, 5].reduce { |sum, i| sum + i } #=> 12

[1, 2, 3, 4, 5].reduce '' do |str, i|
str + i.to_s

end #=> "12345"

words = %w{cat sheep bear}
words.reduce do |memo, word|

memo.length > word.length ? memo : word
end #=> "sheep"

[1, 2, 3].reduce [] do |acc, i|
acc.unshift i

end #=> ???

Computer Science and Engineering  The Ohio State University

Module: Enumerable
 Quantify over elements

['hi', 'yo!'].all? { |w| w.length >= 2 } #=> true
(0..100).any? { |x| x < 20 } #=> true
[1, 3, 17].none? { |x| x % 2 == 0 } #=> true

 Min/Max
words.max_by { |x| x.length }

 Search
(1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9]

 Map/reduce (only non-! version), returns an array
(5..8).map { 2 } #=> [2, 2, 2, 2]
(1..10).reduce(:+) #=> 55
book.reduce(0) { |sum, w| sum + w.length}

Computer Science and Engineering  The Ohio State University

Your Turn: Find the Octothorps

 Requirements
 Given a string
 Produce array of indices where ‘#’ occurs in the string

 Example:
 Given
'a#asg#sdfg#d##'

 Result
[1, 5, 10, 12, 13]

Computer Science and Engineering  The Ohio State University

Your Turn: Squaring Evens

 Requirements
 Given an array of integers
 Produce array that includes only the even elements, each

squared
 Example:
 Given
[1, 2, 3, 7, 7, 1, 4, 5, 6, 2]

 Result
[4, 16, 36, 4]

Computer Science and Engineering  The Ohio State University

Your Turn: Flatten

 Requirements
 Given an array of integers and arrays of integers, where

the (top level) integers are unique
 Remove from the contained arrays all occurrences of the

top-level integers
 Example:
 Given
[3, 5, [4, 5, 9], 1, [1, 2, 3, 8, 9]]

 Result
[3, 5, [4, 9], 1, [2, 8, 9]]

Computer Science and Engineering  The Ohio State University

Example: What Does This Do?
words = File.open('tomsawyer.txt') { |f|

f.read }.split
freq, max = [], ''
words.each do |w|
max = w if w.length > max.length
freq[w.length] = 0 if !freq[w.length]
freq[w.length] += 1

end
puts words.length
puts words.reduce(0) { |s, w| s + w.length }
freq.each_index do |i|
puts "#{i}-letter words #{freq[i]}"

end
puts max

Computer Science and Engineering  The Ohio State University

Hashes

 Partial map: keys  values
 Keys must be unique

 Indexed with array syntax []
h['hello'] = 5

 Literal syntax for initialization
h = {'red' => 0xf00,

'green' => 0x0f0,
'blue' => 0x00f }

 Optional: Instantiate with a default value (or block)
h1 = Hash.new 0 #=> beware aliases
h2 = Hash.new { |h, k| h[k] = k + k }

Computer Science and Engineering  The Ohio State University

Using Hashes
h = {'age' => 21} # create new Hash
h['age'] += 1 # values are mutable
h['id'] = 0x2a # hash can grow
h.size #=> 2
h['name'] = 'Luke' # heterogenous values
h[4.3] = [1, 3, 5] # heterogenous keys
h.delete 'id' # hash can shrink

h == {'age' => 22,
'name' => 'Luke',
4.3 => [1, 3, 5]}

Computer Science and Engineering  The Ohio State University

Example: Hashes
list = %w{cake bake cookie car apple}

Group by string length:
groups = Hash.new{ |h, k| h[k] = [] }
list.each { |v|

groups[v.length] << v
}
groups == { 4 => ["cake", "bake"],
6 => ["cookie"],
3 => ["car"], 5 => ["apple"] }

Computer Science and Engineering  The Ohio State University

Your Turn: Frequency Count

 Requirements
 Given an array of words (ie strings)
 Compute the frequency of occurrence of each word

 Example:
 Given

["car", "van", "car", "car"]

 Compute
{"car" => 3, "van" => 1}

Computer Science and Engineering  The Ohio State University

Your Turn: Frequency Count (Example)

list = %w{car van car car}

Your code here

groups #=> {"car" => 3, "van" => 1}

Computer Science and Engineering  The Ohio State University

Using Blocks with Hashes

 Do something with every key/value pair
h.each {|k, v| print "(#{k}, #{v}) "}

 Do something with every key or value
h.each_key { |k| print "#{k}--" }
h.each_value { |v| print "#{v}--" }

 Combine two hashes
h1.merge(h2) { |k, v1, v2| v2 – v1 }

 Filter
a.delete_if { |k, v| v =~ /[aeiou]/ }
a.keep_if { |k, v| v =~ /[aeiou]/ }

Computer Science and Engineering  The Ohio State University

Immutability of Keys

 Rule: Once a key is in a hash, never change its value
grades[student] = 'C+'
student.wake_up! # danger, changes (value of) a key

 Problem: Aliases
 “Solution” (for strings as keys): Ruby implicitly

copies and freezes strings used as keys in a hash
a, b = String.new('fs'), String.new('sn')
h = {a => 34, b => 44}
puts a.object_id, b.object_id
h.each_key { |key| puts key.object_id }

Computer Science and Engineering  The Ohio State University

Symbols

 Roughly: unique & immutable strings
 Syntax: prefix with ":"

:height
:'some symbol'
:"#{name}'s crazy idea"

 Easy (too easy?) to convert between symbols and
strings
:name.to_s #=> "name"
'name'.to_sym #=> :name

 But symbols are not strings
:name == 'name' #=> false

Computer Science and Engineering  The Ohio State University

Operational View

 A symbol is created once, and all uses refer to that
same object (aliases)

 Symbols are immutable
 Example

[].object_id #=> 200
[].object_id #=> 220
[].equal? [] #=> false
:world.object_id #=> 459528
:world.object_id #=> 459528
:world.equal? :world #=> true

Computer Science and Engineering  The Ohio State University

Symbols as Hash Keys

 Literal notation, but note location of the colon!
colors = {red: 0xf00,

green: 0x0f0,
blue: 0x00f}

 This is just syntactic sugar
 {name: value} same as {:name => value}
 The key is a symbol (eg :red)

 Pitfalls
colors.red #=> NoMethodError
colors["red"] #=> nil
colors[:red] #=> 3840 (ie 0xf00)

Computer Science and Engineering  The Ohio State University

Keyword Arguments
 Alternative to positional matching of arguments with

formal parameters
def display(first:, last:)
puts "Hello #{first} #{last}"

end
display first: 'Mork', last: 'Ork'
display last: 'Hawking', first: 'Steven'

 Providing a default value makes that argument optional
def greet(title: 'Dr.', name:)
puts "Hello #{title} #{name}"

end
 Benefits: Client code is easier to read, and flexibility in

optional arguments

Computer Science and Engineering  The Ohio State University

Summary: Blocks, Enumerations, Hashes
 Blocks
 Code passed as argument to a function
 Elegant iteration over arrays

 Map and Reduce
 Transform an array into an array (element-wise)
 Squash an array into a single value

 Enumerable
 Many useful iteration methods

 Hashes
 Partial maps (aka associative arrays)

 Symbols
 Unique, immutable strings
 Often used as keys in hashes

