
Computer Science and Engineering  College of Engineering  The Ohio State University

Ruby:
Object-Oriented Concepts

Lecture 9

Computer Science and Engineering  The Ohio State University

Classes
 Classes have methods and variables

class LightBulb # use CamelCase for class names
def initialize # reserved method name

@state = false # @ means "instance variable"
end
def on?

@state # implicit return
end
def flip_switch! # use snake_case for method names

@state = !@state
end

end
 Instantiation with new calls initialize method

f = LightBulb.new #=> <LightBulb:0x0000e71c2322 @state=false>
f.on? #=> false

Computer Science and Engineering  The Ohio State University

Visibility
 Instance variables are always private (to object!)
 Instance methods can be private, protected, public (default)

class LightBulb
private def inside

…
end

def access_internals(other_bulb) # public (default)
inside # ok, calls self.inside
other_bulb.inside # error: inside is private
self.inside # error: explicit receiver not allowed

end
end

 Rules
 Private: no receiver (ie private to object, cf. Java)
 Protected: type of receiver same/below self (ie private to class)

Computer Science and Engineering  The Ohio State University

Getters/Setters
class LightBulb
def initialize(color, state: false)

@color = color # instance variable not visible from outside
@state = state # instance variable not visible from outside

end
def color

@color
end
def state

@state
end
def state=(value)

@state = value
end

end

Computer Science and Engineering  The Ohio State University

Attributes: Accessor
class LightBulb
def initialize(color, state: false)

@color = color
@state = state

end
def color

@color
end

attr_accessor :state # note: argument is a symbol

end

Computer Science and Engineering  The Ohio State University

Attributes: Reader
class LightBulb
def initialize(color, state: false)

@color = color
@state = state

end

attr_reader :color

attr_accessor :state

end

Computer Science and Engineering  The Ohio State University

Attributes: Three Kinds
class LightBulb
attr_reader :color
attr_accessor :state
attr_writer :size

def initialize(color, state: false)
@color = color
@state = state
@size = 0

end
end

Computer Science and Engineering  The Ohio State University

Classes Are Always Open
 A class can always be extended

class Street
def construction … end # Street has one method

end
…
class Street

def repave … end # Street now has two methods
end

 Applies to core classes too
class Integer

def log2_of_cube # lg(self^3)
(self**3).to_s(2).length - 1

end
end
500.log2_of_cube #=> 26

Computer Science and Engineering  The Ohio State University

Classes are Always Open (!)

 Existing methods can be redefined!

 When done with system code (libraries, core …)
called “monkey patching”

 Tempting, but… Just Don’t Do It

Computer Science and Engineering  The Ohio State University

No Overloading

 Method identified by (symbol) name
 No distinction based on number of arguments

 Approximation: default arguments
def initialize(width, height = 10)
@width = width
@height = height

end

 Old alternative: trailing options hash
def initialize(width, options)

 Modern style: default keyword arguments
def initialize(height: 10, width:)

Computer Science and Engineering  The Ohio State University

A Class is an Object Instance too
 Even classes are objects, created by :new

LightBulb = Class.new do # class LightBulb
def initialize
@state = false

end
def on?
@state

end
def flip_switch!
@state = !@state

end
end

Computer Science and Engineering  The Ohio State University

Instance, Class, Class Instance
class LightBulb
@state1 # class instance var
def initialize
@state2 = … # instance variable
@@state3 = … # class variable

end
def bar # instance method
… # sees @state2, @@state3

end
def self.foo # class method
… # sees @state1, @@state3

end
end

Computer Science and Engineering  The Ohio State University

Inheritance
 Single inheritance between classes

class LightBulb < Device
…

end
 Default superclass is Object (which inherits from BasicObject)

 Keyword super to call parent's method
 Call without arguments means forward all arguments

class LightBulb < Device
def electrify(current, voltage)
do_work
super # with current and voltage

end
end

Computer Science and Engineering  The Ohio State University

Modules
 Another container for definitions

module Stockable
MAX = 1000
class Item … end
def self.inventory … end # utility function
def order … end # instance method

end

 Modules cannot, themselves, be instantiated
s = Stockable.new # NoMethodError
i = Stockable::Item.new # ok
Stockable.inventory # ok
Stockable.order # NoMethodError (see Mixins)

Computer Science and Engineering  The Ohio State University

Modules as Namespaces
 Modules create independent namespaces
 cf. packages in Java

 Access contents via scoping (::)
Math::PI #=> 3.141592653589793
Math::cos 0 #=> 1.0
widget = Stockable::Item.new
x = Stockable::inventory # but prefer . style
Post < ActiveRecord::Base
BookController < ActionController::Base

 Style: use dot to invoke utility functions
Math.cos 0 #=> 1.0
x = Stockable.inventory # preferred over :: style

Computer Science and Engineering  The Ohio State University

Modules are Always Open
 Module contains several related classes
 Style: Each class should be in its own file
 So split module definition

game.rb
module Game
end

game/card.rb
module Game

class Card … end
end

game/player.rb
module Game

class Player … end
end

Computer Science and Engineering  The Ohio State University

Modules as “Mixins”
 Another container for method definitions

module Stockable
def order … end

end
 A module can be included in a class

class LightBulb < Device
include Stockable, Comparable …

end
 Module's (instance) methods become (instance) methods

of the class
bulb = LightBulb.new
bulb.order # from Stockable
if bulb <= old_bulb # from Comparable

Computer Science and Engineering  The Ohio State University

Requirements for Mixins

 Mixins often rely on certain aspects of classes into which
they are included

 Example: Comparable methods use #<=>
module Comparable

def <(other) … end
def <=(other) … end

end

 Enumerable methods use #each
 Recall layering in SW I/II? Roughly:
 Class implements kernel methods
 Module implements secondary methods

Computer Science and Engineering  The Ohio State University

Software Engineering

 All the good principles of SW I/II apply
 Single point of control over change
 Avoid magic numbers

 Client view: abstract state, contracts, invariants
 Implementer view: concrete rep, correspondence,

invariants
 Checkstyle tool: rubocop
 Documentation: YARD
 Notation for types: yardoc.org/types.html
@param words Array<String> the lexicon

Computer Science and Engineering  The Ohio State University

Summary: Object-Oriented Concepts

 Classes as blueprints for objects
 Contain methods and variables
 Public vs private visibility of methods
 Attributes for automatic getters/setters

 Metaprogramming
 Classes are objects too
 “Class instance” variables

 Single inheritance
 Modules are namespaces and mixins

