Ruby:

Object-Oriented Concepts

Lecture 9

nnnnnnnnnnnnnnnnnnn

Classes

Computer Science and Engineering B The Ohio State University

Classes have methods and variables

class LightBulb # use CamelCase for class names
def initialize # reserved method name
@state = false # @ means '"instance variable"
end
def on?
@state # implicit return
end
def flip switch! # use snake case for method names
@state = !@state
end
end

Instantiation with new calls initialize method
f = LightBulb.new #=> <LightBulb:0x0000e71c2322 (@state=false>
f.on? #=> false

V 1SI b . I . t
Computer Science and Engineering B The Ohio State University

O Instance variables are always private (to object!)

O Instance methods can be private, protected, public (default)
class LightBulb

private def inside

end

def access internals (other bulb) # public (default)

inside # ok, calls self.inside
other bulb.inside # error: inside is private
self.inside # error: explicit receiver not allowed
end
end
O Rules

B Private: no receiver (ie private to object, cf. Java)
B Protected: type of receiver same/below self (ie private to class)

Getters/Setters

Computer Science and Engineering B The Ohio State University

class LightBulb
def initialize(color, state: false)
@Qcolor = color # instance variable not visible from outside
@state = state # instance variable not visible from outside
end
def color
@Qcolor
end
def state
@state
end
def state=(wvalue)
@state = wvalue
end
end

Attributes: Accessor

Computer Science and Engineering B The Ohio State University

class LightBulb

def initialize(color, state: false)
@Qcolor = color
@state = state

end

def color
@Qcolor

end

attr accessor :state # note: argument is a symbol

end

Attributes: Reader

Computer Science and Engineering B The Ohio State University

class LightBulb
def initialize(color, state: false)
@Qcolor = color
@state = state
end

attr_reader :color

att:_accessor :state

end

Attributes: Three Kinds

Computer Science and Engineering B The Ohio State University

class LightBulb
attr reader :color
attr accessor :state
attr writer :size

def initialize(color, state: false)
@Qcolor = color
@state = state
@size = 0
end
end

Classes Are Always Open

Computer Science and Engineering B The Ohio State University

A class can always be extended
class Street

def construction .. end # Street has one method
end

class Street
def repave .. end # Street now has two methods
end

Applies to core classes too
class Integer
def log2 of cube # lg(self”3)
(self**3) .to s(2) .length - 1
end
end

500.1log2 of cube #=> 26

Classes are Always Open (!)

1 Existing methods can be redefined!

1 When done with system code (libraries, core ...)
called "monkey patching”

1 Tempting, but... Just Don’t Do It

No Overloading

1 Method identified by (symbol) name
B No distinction based on number of arguments

1 Approximation: default arguments
def initialize (width, height = 10)
@width = width
@height = height
end
1 Old alternative: trailing options hash
def initialize (width, options)
1 Modern style: default keyword arguments
def initialize (height: 10, width:)

Computer Science and Engineering B The Ohio State Universi

A Class is an Object Instance too

Computer Science and Engineering B The Ohio State University

Even classes are objects, created by :new
LightBulb = Class.new do # class LightBulb
def initialize
@state = false
end
def on?
@state
end
def flip switch!
@state = !@state
end
end

Instance, Class, Class Instance

Computer Science and Engineering B The Ohio State University

class LightBulb
@statel # class instance var
def initialize

@state2 = .. # instance variable
@@state3d = ... # class variable
end
def bar # instance method
sees (@state2, (@@state3
end
def self.foo # class method
sees (@statel, (@@state3

end
end

Inheritance

Computer Science and Engineering B The Ohio State University

Single inheritance between classes
class LightBulb < Device

end
B Default superclass is Object (which inherits from BasicObject)

Keyword super to call parent's method
B Call without arguments means forward all arguments
class LightBulb < Device
def electrify(current, voltage)
do work
super # with current and voltage
end
end

Modules

Computer Science and Engineering B The Ohio State University

Another container for definitions
module Stockable
MAX = 1000
class Item .. end
def self.inventory .. end # utility function
def order .. end # instance method
end

Modules cannot, themselves, be instantiated
s = Stockable.new # NoMethodError
i = Stockable::Item.new # ok
Stockable.inventory # ok

Stockable.order # NoMethodError (see Mixins)

Modules as Namespaces

Modules create independent namespaces
B cf. packages in Java

Access contents via scoping (::)

Computer Science and Engineering B The Ohio State University

Math: :PI => 3.141592653589793

Math::cos O #=> 1.0
widget = Stockable::Item.new

X = Stockable::inventory # but prefer . style

Post < ActiveRecord: :Base
BookController < ActionController: :Base

Style: use dot to invoke utility functions

Math.cos 0 #=> 1.0

X = Stockable.inventory # preferred over ::

style

Modules are Always Open

Computer Science and Engineering B The Ohio State University

O Module contains several related classes
O Style: Each class should be in its own file

O So split module definition
game.rb
module Game
end

game/card.rb
module Game

class Card .. end
end

game/player.rb
module Game

class Player .. end
end

Modules as "Mixins”

Computer Science and Engineering B The Ohio State University

Another container for method definitions
module Stockable
def order .. end
end

A module can be included in a class
class LightBulb < Device
include Stockable, Comparable ..
end

Module's (instance) methods become (instance) methods
of the class

bulb = LightBulb.new
bulb.order # from Stockable
if bulb <= old bulb # from Comparable

Requirements for Mixins

Computer Science and Engineering B The Ohio State University

1 Mixins often rely on certain aspects of classes into which
they are included
1 Example: Comparable methods use #<=>
module Comparable
def <(other) .. end
def <=(other) .. end
end

1 Enumerable methods use #each

1 Recall layering in SW I/II? Roughly:
B Class implements kernel methods
B Module implements secondary methods

Software Engineering

mputer Science and Engineering B The Ohio State University

1 All the good principles of SW I/II apply

1 Single point of control over change
B Avoid magic numbers

1 Client view: abstract state, contracts, invariants

1 Implementer view: concrete rep, correspondence,
Invariants

1 Checkstyle tool: rubocop

1 Documentation: YARD

B Notation for types: yardoc.org/types.htm|
@param words Array<String> the lexicon

Summary: Object-Oriented Concepts

versity

0 Classes as blueprints for objects
B Contain methods and variables
B Public vs private visibility of methods
B Attributes for automatic getters/setters
O Metaprogramming
B Classes are objects too
B "Class instance” variables

[0 Single inheritance
0 Modules are namespaces and mixins

