Testing Frameworks
(Minitest: Assert & Spec

Lecture 10

Computer Science and Engineering B College of Engineering B The Ohio State University

Minitest and RSpec

Com

Many popular testing libraries for Ruby

Minitest (replaces older Test::Unit)

B Comes built-in

B Looks like JUnit (mapped to Ruby syntax)
B Well-named!

RSpec
B Installed as a library (i.e. a gem)

B Looks different from JUnit (and even Ruby!)
B Most unfortunate name!

RSpec view is that test cases define expected behavior—
they are the spec!
B What is wrong with that view?

Writing Minitest Tests

Require runner and UUT

require 'minitest/autorun’ # the test runner
require relative '../lib/card' # the unit under test (UUT)

Test fixture: subclass of Minitest: :Test
class TestCard < Minitest: :Test

Test case: a method in the fixture

B Method name must begin with test
def test identifies set .. end

B Contains assertion(s) exercising a single piece of code /
behavior / functionality

B Should be small (i.e. test one thing)
B Should be independent (i.e. of other tests)

Test Suite: a collection of fixtures

Example: test_card.rb

Computer Science and Engineering B The Ohio State University

require 'minitest/autorun'
require relative '../lib/card' # card.rb must be on load path

class TestCard < Minitest: :Test

def test has number
Card.new, :number
end

def test remembers number
@card = Card.new 1, 'oval', 'open',6 'red'
1, @card.number
end
end

Execution Model

Computer Science and Engineering B The Ohio State University

[Teiii? rd]

has_number

has number

o il
remembers () -

remembers

(([l
¢ [l

Execution Model: Implications

Computer Science and Engineering B The Ohio State University

Separate instances of test class created
B One instance / test case

est cases don't have side effects on each other
B Passing/failing one test does not affect others

Cannot rely on tests running in any particular order
B Randomized order of execution
B Controllable with --seed command-line option
B Also controllable by invoking, in test fixture:
i suck and my tests are order dependent!
Fixture: common set-up to all test cases
B Field(s) for instance(s) of class being tested

B Factor initialization code into its own method
B This method must be called setup

Good Practice: setup

Computer Science and Engineering B The Ohio State University

1 Initialize a fixture with a setup method (rather than
initialize method)

1 Reasons:

B If the code being tested throws an exception during the
setup, the output is much more meaningful

B Symmetry with teardown method for cleaning up after a
test case

Example: test_card.rb with Setup

Computer Science and Engineering B The Ohio State University

require 'minitest/autorun'
require relative '../lib/card' # card.rb must be on load path

class TestCard < Minitest::Test

def setup
@card = Card.new 1, 'oval', 'open', 'red'
end

def test has number
assert respond to (@card, :number
end

def test remembers number
assert equal 1, (@card.number
end
end

Execution Model with Setup

Computer Science and Engineering B The Ohio State University

[Tesi(éi rd]

*
*
*
*
*
*
*
.
*
*
*
*
*
*
*
.
*
*
*
*
*
"
*

: . instance of

*
*
*
*
*
*
*
.
“
+*

dcard
setup () - @card
has number () - ‘ setup () -
remembers () - has number () -
‘ remembers () -

Minitest Assertion Methods

Computer Science and Engineering B The Ohio State University

1 Most have two versions: assert & refute

B Example: assert nil, refute nil

B No need to assert a negation (use refute instead)
1 Most take an optional message

assert empty Library.new,
"A new library contains no books"

B Message displayed when the assertion fails

1 Specials:
B pass/flunk — always passes/fails
B skip - skips the rest of the test case

1 Performance benchmarking also available

Asserting Equality

Computer Science and Engineering B The Ohio State University

1 Assert two objects are == equal (object values)

assert equal expected, actual

B Failure produces useful output
TestCardf#ftest total number of cards

Expected: 81
Actual: 27

B Compare to output of assert exp == actual
TestCardffitest shuffle is permutation

Failed assertion, no message given

1 Assert two objects are aliased (reference values)

assert same @table.north, (@players.first

Co

Good Practice: Comparing Floats

nce and Engineering B The Ohio State University

1 Never compare floating point numbers for equality

assert equal 1.456, calculated, "Low-density experiment"

B Numeric instabilities make exact equality problematic for
floats

1 Better: Equality with tolerance
assert in delta Math::PI, (22.0 / 7.0), 0.01,
"Archimedes algorithm approximates pi"
assert in epsilon Math::PI, (22.0 / 7.0), 0.1
"Archimedes algorithm approximates pi"

B Delta for absolute error, epsilon for relative error

Common Assertions

O Boolean condition: assert (refute)
assert (@books.all {|b| b.available?}
O Is nil: assert nil (refute nil)
B Checks the result of #nil?

refute nil @library.manager
ie refute (@library.manager.nil?
O Is empty: assert empty (refute emp)
B Checks the result of #empty?

assert empty Library.new

ie assert Library.new.empty?

Computer Science and Engineering B

More Assertions

1 String matches a regular expression

assert match /CSE.*/, @course.name

1 Collection includes a particular item

assert includes (@library, @book

1 Object is of a particular type

assert instance of String, (@book.title

1 Object has a method

assert respond to @student, :alarm

1 Block raises an exception

assert_raises ZeroDivisionError do

@library.average book cost
end

Computer Science and Engineering B

Stubs

Computer Science and Engineering B The Ohio State University

1 Top-down: testing a class that uses A, B, C

1 Problem: We don't have implementations for A, B, C
B Want quick approximations of A, B, C
B Behave in certain ways, returning canned answers

1 Solution: Stub method

B Overrides a single (existing) method for duration of a block
long str = 'something'

long str.stub :length, 1000000 do

refute safe? (long str)

end

Mocks

Computer Science and Engineering B The Ohio State University

1 Stubs passively allow the test to go through

1 Mocks monitor how they are used, and fail if they
aren't called correctly

1 Two methods:
B expect creates a stubbed method (and sets its return)
B verify tests that stubbed methods were called correctly

= Minitest: :Mock.new

printer.expect :available?, true
printer.expect :render, nil, [String]
@doc.print () => 'Done'

printer.verify

Good Practice: Organization

Computer Science and Engineering B The Ohio State University

Keep tests in the same project as the code
B They are part of the build, the repo, etc.
B Helps to keep tests current
Separate directories for implementation and tests
app
—— Gemfile
—— Gemfile.lock
| README .md
—— 1ib # implementation files
L card.rb
L test # tests
L — test card.rb

Name test classes consistently
B eg TestCard to test the Card class

Running the Test cases

O Add Minitest to the Gemfile
B Needed for require 'minitest/autorun' to work
app$ bundle add minitest

O Test fixture needs to find UUT, so either:
1. Use require_relative in the test fixture

require relative '../lib/card' # in test card.rb

app$ ruby test/test card.rb # run test fixture
2. Use require in the test fixture, add lib to load path

require 'card' # in test card.rb

app$ ruby -I lib test/test card.rb # run test fixture

Alternative Syntax: Expectations

g B The Ohio State University

Com

1 Problem: Cumbersome method names

test shuffle changes deck configuration

1 Solution: exploit Ruby language flexibility in API of
testing library

B Methods are available that change the syntax and
structure of test cases

B Domain-specific language (DSL) for tests

1 Result: Minitest::Spec
B Notation inspired by RSpec

Writing Minitest::Spec Tests

Computer Science and Engineering B The Ohio State University

Require runner and UUT as usual

Test fixture ("example group”) is a describe block
describe Card "noun being described" do .. end

B Can be nested, and identified by string

B The block contains examples

[est case ("example”) is an it block

it "identifies a set" ... end

B Contains expectation(s) on a single piece of code / behavior /
functionality

Expectations are methods on values of objects

value (@card.number) .must equal 1

expect (@card.number) .must equal 1 # equivalent
~ (Gcard.number) .must equal 1 # equivalent

Example: test_card.rb with Spec Syntax

Computer Science and Engineering B The Ohio State Univ:

require 'minitest/autorun'’
require relative '../lib/card' # card.rb must be on load path

describe Card, "when initialized" do

it "has a number" do
(Card.new) . :number

end

it "remembers its original number" do
@card = Card.new 1, "oval", "open", "red"
(Qcard.number) . 1
end
end

Expectations vs. Assertions

Computer Science and Engineering B The Ohio State University

O Similarity: Positive and negative form
must be empty # equivalent of assert empty

wont be empty # equivalent of refute empty
O Difference: Argument order

assert equal expected, actual
_actual .must equal expected

O Difference: No string argument

B Meaningful output comes from group and example names

Card::when initialized#test 0001 has a number
[test card.rb:14]:

Expected #<Card:0x00564£9a00> (Card) to respond to
#number.

_(object).must +

Computer Science and Engineering B The Ohio State University

General expectation: Must be
_x.must be :<=, 10

Many other flavors of expectation...
_x.must _equal y

_x.must be same as y

(@llbrary manager) .must be nil
._@shelf must be empty
_@library.must include (@book
_PI.must be within delta (22.0 / 7.0), .01
__(@Gbook.title) .must be instance of String
__(@Gcourse.name) .must match /CSE.*/
_@student.must respond to :alarm
proc {

@library.average book cost
} .must raise ZeroDivisionError

Setup/Teardown

1 Methods before, after
describe Student do
before do
@buck id = BuckID.new '4328429'
@s = Student.new buck id
end

it 'should come to class' do .. end

end

1 Executes before each test in the describe block

Let: Lazy Initialization

Computer Science and Engineering B The Ohio State University

describe Student do
both (i) defines a method (student)
and (ii) memoizes its return value!
let(:student) { Student.new 1234 }

describe 'sleep deprivation' do
it 'misses class' do
if lecture.time.8am?
__(student.awake?) .must equal false
end
end
end

Summary: Testing Frameworks

Compu!

1 MiniTest
B Test fixture: class extending Minitest:: Test
B Test case: method named test

1 Execution model: multiple instances
B Independence of test cases

1 MiniTest: :Spec
B Examples and expectations
B String descriptions

1 RSpec
B Stubs and mocks

neering B The Ohio State Universi

