
Computer Science and Engineering  College of Engineering  The Ohio State University

Testing Frameworks
(Minitest: Assert & Spec)

Lecture 10

Computer Science and Engineering  The Ohio State University

Minitest and RSpec
 Many popular testing libraries for Ruby
 Minitest (replaces older Test::Unit)
 Comes built-in
 Looks like JUnit (mapped to Ruby syntax)
 Well-named!

 RSpec
 Installed as a library (i.e. a gem)
 Looks different from JUnit (and even Ruby!)
 Most unfortunate name!

 RSpec view is that test cases define expected behavior—
they are the spec!
 What is wrong with that view?

Computer Science and Engineering  The Ohio State University

Writing Minitest Tests
 Require runner and UUT

require 'minitest/autorun' # the test runner
require_relative '../lib/card' # the unit under test (UUT)

 Test fixture: subclass of Minitest::Test
class TestCard < Minitest::Test

 Test case: a method in the fixture
 Method name must begin with test_

def test_identifies_set … end

 Contains assertion(s) exercising a single piece of code /
behavior / functionality

 Should be small (i.e. test one thing)
 Should be independent (i.e. of other tests)

 Test Suite: a collection of fixtures

Computer Science and Engineering  The Ohio State University

Example: test_card.rb
require 'minitest/autorun'
require_relative '../lib/card' # card.rb must be on load path

class TestCard < Minitest::Test

def test_has_number
assert_respond_to Card.new, :number

end

def test_remembers_number
@card = Card.new 1, 'oval', 'open', 'red'
assert_equal 1, @card.number

end
end

Computer Science and Engineering  The Ohio State University

Execution Model

has_number()

remembers()

TestCard

has_number()

remembers()

@card

instance ofinstance of

Computer Science and Engineering  The Ohio State University

Execution Model: Implications
 Separate instances of test class created
 One instance / test case

 Test cases don't have side effects on each other
 Passing/failing one test does not affect others

 Cannot rely on tests running in any particular order
 Randomized order of execution
 Controllable with --seed command-line option
 Also controllable by invoking, in test fixture:

i_suck_and_my_tests_are_order_dependent!

 Fixture: common set-up to all test cases
 Field(s) for instance(s) of class being tested
 Factor initialization code into its own method
 This method must be called setup

Computer Science and Engineering  The Ohio State University

Good Practice: setup

 Initialize a fixture with a setup method (rather than
initialize method)

 Reasons:
 If the code being tested throws an exception during the

setup, the output is much more meaningful
 Symmetry with teardown method for cleaning up after a

test case

Computer Science and Engineering  The Ohio State University

Example: test_card.rb with Setup
require 'minitest/autorun'
require_relative '../lib/card' # card.rb must be on load path

class TestCard < Minitest::Test

def setup
@card = Card.new 1, 'oval', 'open', 'red'

end

def test_has_number
assert_respond_to @card, :number

end

def test_remembers_number
assert_equal 1, @card.number

end
end

Computer Science and Engineering  The Ohio State University

Execution Model with Setup

has_number()

remembers()

@card

2

2

setup()

1

1

TestCard

has_number()

remembers()

@card

setup()

instance ofinstance of

Computer Science and Engineering  The Ohio State University

Minitest Assertion Methods
 Most have two versions: assert & refute
 Example: assert_nil, refute_nil
 No need to assert a negation (use refute instead)

 Most take an optional message
assert_empty Library.new,

"A new library contains no books"

 Message displayed when the assertion fails
 Specials:
 pass/flunk – always passes/fails
 skip – skips the rest of the test case

 Performance benchmarking also available

Computer Science and Engineering  The Ohio State University

Asserting Equality

 Assert two objects are == equal (object values)
assert_equal expected, actual

 Failure produces useful output
TestCard#test_total_number_of_cards
Expected: 81
Actual: 27

 Compare to output of assert exp == actual
TestCard#test_shuffle_is_permutation
Failed assertion, no message given

 Assert two objects are aliased (reference values)
assert_same @table.north, @players.first

Computer Science and Engineering  The Ohio State University

Good Practice: Comparing Floats

 Never compare floating point numbers for equality
assert_equal 1.456, calculated, "Low-density experiment"

 Numeric instabilities make exact equality problematic for
floats

 Better: Equality with tolerance
assert_in_delta Math::PI, (22.0 / 7.0), 0.01,

"Archimedes algorithm approximates pi"
assert_in_epsilon Math::PI, (22.0 / 7.0), 0.1

"Archimedes algorithm approximates pi"

 Delta for absolute error, epsilon for relative error

Computer Science and Engineering  The Ohio State University

Common Assertions

 Boolean condition: assert (refute)
assert @books.all {|b| b.available?}

 Is nil: assert_nil (refute _nil)
 Checks the result of #nil?

refute_nil @library.manager
ie refute @library.manager.nil?

 Is empty: assert_empty (refute_emp)
 Checks the result of #empty?

assert_empty Library.new
ie assert Library.new.empty?

Computer Science and Engineering  The Ohio State University

More Assertions

 String matches a regular expression
assert_match /CSE.*/, @course.name

 Collection includes a particular item
assert_includes @library, @book

 Object is of a particular type
assert_instance_of String, @book.title

 Object has a method
assert_respond_to @student, :alarm

 Block raises an exception
assert_raises ZeroDivisionError do
@library.average_book_cost

end

Computer Science and Engineering  The Ohio State University

Stubs

 Top-down: testing a class that uses A, B, C
 Problem: We don't have implementations for A, B, C
 Want quick approximations of A, B, C
 Behave in certain ways, returning canned answers

 Solution: Stub method
 Overrides a single (existing) method for duration of a block

long_str = 'something'
long_str.stub :length, 1000000 do
refute safe?(long_str)

end

Computer Science and Engineering  The Ohio State University

Mocks

 Stubs passively allow the test to go through
 Mocks monitor how they are used, and fail if they

aren't called correctly
 Two methods:
 expect creates a stubbed method (and sets its return)
 verify tests that stubbed methods were called correctly

printer = Minitest::Mock.new
printer.expect :available?, true
printer.expect :render, nil, [String]
@doc.print (printer) #=> 'Done'
printer.verify

Computer Science and Engineering  The Ohio State University

Good Practice: Organization
 Keep tests in the same project as the code
 They are part of the build, the repo, etc.
 Helps to keep tests current

 Separate directories for implementation and tests
app
├── Gemfile
├── Gemfile.lock
├── README.md
├── lib # implementation files
│ └── card.rb
└── test # tests

└── test_card.rb
 Name test classes consistently
 eg TestCard to test the Card class

Computer Science and Engineering  The Ohio State University

Running the Test cases

 Add Minitest to the Gemfile
 Needed for require 'minitest/autorun' to work
app$ bundle add minitest

 Test fixture needs to find UUT, so either:
1. Use require_relative in the test fixture

require_relative '../lib/card' # in test_card.rb
app$ ruby test/test_card.rb # run test fixture

2. Use require in the test fixture, add lib to load path
require 'card' # in test_card.rb
app$ ruby –I lib test/test_card.rb # run test fixture

Computer Science and Engineering  The Ohio State University

Alternative Syntax: Expectations

 Problem: Cumbersome method names
test_shuffle_changes_deck_configuration

 Solution: exploit Ruby language flexibility in API of
testing library
 Methods are available that change the syntax and

structure of test cases
 Domain-specific language (DSL) for tests

 Result: Minitest::Spec
 Notation inspired by RSpec

Computer Science and Engineering  The Ohio State University

Writing Minitest::Spec Tests
 Require runner and UUT as usual
 Test fixture (“example group”) is a describe block

describe Card "noun being described" do … end

 Can be nested, and identified by string
 The block contains examples

 Test case (“example”) is an it block
it "identifies a set" … end

 Contains expectation(s) on a single piece of code / behavior /
functionality

 Expectations are methods on values of objects
value(@card.number).must_equal 1
expect(@card.number).must_equal 1 # equivalent
_(@card.number).must_equal 1 # equivalent

Computer Science and Engineering  The Ohio State University

Example: test_card.rb with Spec Syntax
require 'minitest/autorun'
require_relative '../lib/card' # card.rb must be on load path

describe Card, "when initialized" do

it "has a number" do
_(Card.new).must_respond_to :number
value(Card.new).must_respond_to :number
expect(Card.new).must_respond_to :number

end

it "remembers its original number" do
@card = Card.new 1, "oval", "open", "red"
_(@card.number).must_equal 1

end
end

Computer Science and Engineering  The Ohio State University

Expectations vs. Assertions

 Similarity: Positive and negative form
must_be_empty # equivalent of assert_empty
wont_be_empty # equivalent of refute_empty

 Difference: Argument order
assert_equal expected, actual
_actual.must_equal expected

 Difference: No string argument
 Meaningful output comes from group and example names

Card::when initialized#test_0001_has a number
[test_card.rb:14]:
Expected #<Card:0x00564f9a00> (Card) to respond to
#number.

Computer Science and Engineering  The Ohio State University

(object).must + …
 General expectation: Must be

_x.must_be :<=, 10
 Many other flavors of expectation…

_x.must_equal y
_x.must_be_same_as y
_(@library.manager).must_be_nil
_@shelf.must_be_empty
_@library.must_include @book
_PI.must_be_within_delta (22.0 / 7.0), .01
_(@book.title).must_be_instance_of String
_(@course.name).must_match /CSE.*/
_@student.must_respond_to :alarm
proc {

@library.average_book_cost
}.must_raise ZeroDivisionError

Computer Science and Engineering  The Ohio State University

Setup/Teardown

 Methods before, after
describe Student do

before do
@buck_id = BuckID.new '4328429'
@s = Student.new buck_id

end

it 'should come to class' do … end
end

 Executes before each test in the describe block

Computer Science and Engineering  The Ohio State University

Let: Lazy Initialization
describe Student do
both (i) defines a method (student)
and (ii) memoizes its return value!
let(:student) { Student.new 1234 }

describe 'sleep deprivation' do
it 'misses class' do
if lecture.time.8am?
_(student.awake?).must_equal false

end
end

end

Computer Science and Engineering  The Ohio State University

Summary: Testing Frameworks

 MiniTest
 Test fixture: class extending Minitest::Test
 Test case: method named test_

 Execution model: multiple instances
 Independence of test cases

 MiniTest::Spec
 Examples and expectations
 String descriptions

 RSpec
 Stubs and mocks

