
Computer Science and Engineering  College of Engineering  The Ohio State University

Networking Basics:
IP, DNS, URL, MIME

Lecture 11

Computer Science and Engineering  The Ohio State University

Internet Protocol (IP) Addresses

 A unique 32-bit number
 Assigned to device connected to internet
 An address for delivery of packets

 Written in dotted-decimal notation
 Divided into 4 fields separated by “.”
 Each field is 8 bits, ie 0-255 decimal

10100100011010110111101100000110
10100100.01101011.01111011.00000110
164.107.123.6

 Some are reserved: eg, 127.0.0.1

Computer Science and Engineering  The Ohio State University

Value vs Encoding

 Value: 32-bit integer ie 0..4,294,967,295.
 Encodings
 Dotted decimal
 Dotted hex
 Dotted octal
 Hexadecimal
 Decimal
 Binary
 Etc…

 Recall: abstraction, representation, correspondence
relation

Computer Science and Engineering  The Ohio State University

Address Space

 Organizations are allocated blocks of contiguous
address to use

 32 bits = 4 billion distinct addresses
 Population of the earth: 7 billion
 Not enough addresses to go around!
 Feb 2011: Last available top-level blocks were allocated

(to regional internet registries)
 Nov 2019: Last available address allocated

Computer Science and Engineering  The Ohio State University

Address Space: Dealing with Scarcity

 Organizations are allocated blocks of contiguous
address to use

 32 bits = 4 billion distinct addresses
 Population of the earth: 7 billion
 Not enough addresses to go around!
 Feb 2011: Last available top-level blocks were allocated

(to regional internet registries)
 Nov 2019: Last available address allocated

 Solutions:
 NAT
 IPv6

Computer Science and Engineering  The Ohio State University

NAT: Network Address Translation

 When device on a local network sends data out:
 Router replaces source's (private) IP address with its own

 When response comes back to the router:
 Router replaces destination IP address with the private one

of the original sender, forwarding response to that device

https://en.wikipedia.org/wiki/Network_address_translation

Computer Science and Engineering  The Ohio State University

IPv6

 128 bits
 ~1040 addresses; we’re good for a while
 A growing fraction of IP traffic: GoogleIPv6 statistics

 Canonical format:
 Divide bits into 8 fields, separated by “:”
 Each field is 16 bits, written as 4 hex digits (0-FFFF)
 Omit all leading 0’s in a field (retaining at least one digit)
 Replace the longest sequence of consecutive all-0 fields with

“::”
 Note: at most one such sequence is replaced

 Replace left-most if there are multiple runs of this longest length
 Result: unambiguous expansion back to 8 fields

Computer Science and Engineering  The Ohio State University

Canonical Format: Uniqueness

2001:0db8:0000:0000:0000:ff00:0042:8329
2001:0db8:0000:0000:0000:ff00:0042:8329
2001:db8:0:0:0:ff00:42:8329
2001:db8:0:0:0:ff00:42:8329
2001:db8::ff00:42:8329

::1 # reserved for localhost
0:0:0:0:0:0:0:1
0000:0000:0000:0000:0000:0000:0000:0001

Computer Science and Engineering  The Ohio State University

Domain Names and DNS
 Domain Names are human-friendly identifiers
 web.cse.ohio-state.edu is easier than 164.107.129.161
 Case insensitive, but lower-case is standard

 Domain Name System (DNS): lookup service
 Given a string, returns the corresponding IP address(es)
 A string can map to multiple addresses!
 Multiple strings can map to same address!

 Command-line tool: host
$ host cse.osu.edu # 23.185.0.2
$ host www.cse.osu.edu # 23.185.0.2
$ host osu.edu # 99.83.250.163, 75.2.76.225
$ host web.cse.ohio-state.edu # 164.107.129.16

Computer Science and Engineering  The Ohio State University

Depiction of Domain Name Hierarchy

Computer Science and Engineering  The Ohio State University

Domain Name Hierarchy
 Names separated by .’s: eg cse.osu.edu
 This notation has nothing to do with IPv4 dotted decimal

 The right-most name is the top level domain (TLD)
 .edu, .com, .net, .io, .gov, countries (.us, .ca, .it, …)
 Second-level to its left, and so on…, eg www.sos.state.oh.us

 Domain registration (with Cloudflare, Porkbun, etc…)
establishes ownership of a sub-tree
 osu.edu, google.com, github.io, brutus.dev
 Link Fully Qualified Domain Names (FQDN) to IP addresses

 brutus.dev, www.brutus.dev, mail.brutus.dev, …

 Command-line tool: whois
$ whois osu.edu # vs ohio-state.edu, osu.com

Computer Science and Engineering  The Ohio State University

Protocols

 Systematic ordering of messages
 Phone rings
 Callee answers by saying “Hello”
 Caller answers by saying “Hello”

 Different protocols use different messages, different
sequencing, etc
 In Italy, callee answers by saying “Pronto”

Computer Science and Engineering  The Ohio State University

Network Layering: Abstraction

 One protocol is built on top of another
 Application level: FTP, HTTP, SSH, SMTP, TELNET
 Transport: TPC, UDP
 Internet: IP

 Each protocol assumes certain behavior from layer
below
 IP routes packets to destination (unreliable)
 TCP creates a reliable, in-order channel
 HTTP delivers web pages

Computer Science and Engineering  The Ohio State University

Network Ports

 A single host has many ports
 Each application-level protocol has a default port
 ftp -> 20
 http -> 80
 imap ->143
 ssh -> 22
 smtp -> 25
 telnet -> 23

 A “web server” is just a program, running, waiting,
listening for an http call (on port 80)
 See telnet

Computer Science and Engineering  The Ohio State University

URL

 Uniform Resource Locator
scheme://FQDN:port/path?query#fragment

 Schemes include http, https, ftp, mailto, file…
 Case insensitive, but prefer lower case

 Port is optional (each scheme has a default)
 80 for http, 20 for ftp,

 Variety of formats, depending on scheme
http://www.osu.edu/news/index.php
ftp://doe@ftp.cse.ohio-state.edu
mailto://brutus.1@osu.edu

 FQDN is case insensitive, prefer lower case

Computer Science and Engineering  The Ohio State University

Document Root

 Web servers are configured to serve documents from
a location in file system
 “document root”: /var/www/html
 File: /var/www/html/labs/lab2.html
 URL: http://www.cse.osu.edu/labs/lab2.html

 Slashes in path should be for server’s OS (but
forward slashes are common)

 Virtual servers: multiple doc roots
 Proxy servers: remote doc roots

Computer Science and Engineering  The Ohio State University

Encoding (and Decoding)

 A value can be viewed at two levels, eg:
 HELLO
-.. .-.. ---

 Motivation: different uses (reading vs transmission)
 May have
 Different alphabets: letters vs dot-dash
 Different requirements: letters must be upper-case

 Encoding/decoding is the translation between levels
 cf. encrypting/decrypting

 Recall abstract value vs concrete representation

Computer Science and Engineering  The Ohio State University

URL Encoding
 Invariant on abstract value (constraint)
 Metacharacters (;, :, &, #, @…) are reserved

 Invariant on encoding (convention)
 Small set of valid characters, others (eg space, ~, newline…)

are not allowed
 Result: some characters in abstract value are encoded as

%hh (hex value of ASCII code)
 ; is encoded as %3B
 Space is encoded as %20
 ~ is encoded as %7E

 Q: What about % in abstract value?
 A: Encode it too! %25

 aka “percent encoding”

Computer Science and Engineering  The Ohio State University

Example of URL Encoding

Mascot "address": brutus@osu.eduValue
Mascot%20%22address%22%3A%20brutus%40osu.eduEncoding

Computer Science and Engineering  The Ohio State University

MIME
 Multipurpose Internet Mail Extensions
 Originally developed for email attachments

 Content Type: How to interpret a file
 File is a blob of bits (an encoding)
 How should we decode this blob into an (abstract) value? Colors,

sounds, characters?
 Recall: correspondence relation

 Syntax of content types: type/subtype
 text/plain, text/html, text/css, text/javascript
 image/gif, image/png, image/jpeg
 video/mpeg, video/quicktime

 Transfer Encoding: How to interpret a msg
 How to decode the blob of bits that arrived into a file
 A layered encoding
 Examples: quoted-printable, base64

Computer Science and Engineering  The Ohio State University

Email Example: Multiple Parts
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.
--aFrontierString
Content-Type: text/plain

This is the body of the message.
--aFrontierString
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB
0aGUg
Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg==
--aFrontierString--

Computer Science and Engineering  The Ohio State University

Email Example: Content Type
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.
--aFrontierString
Content-Type: text/plain

This is the body of the message.
--aFrontierString
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB
0aGUg
Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg==
--aFrontierString--

Computer Science and Engineering  The Ohio State University

Determining MIME Content Type
 The sender (web server) determines MIME (content) type of

document being sent
 Rules map file extensions to MIME types

 If file arrives without MIME info, receiver has to guess (see
file command)
 File extension may help
 Contents may help: Some files begin with a "magic number"

 JPG: ff d8…
 PDF: 25 50 44 46 2D… (ie %PDF-)
 PNG: 89 50 4e 47 0d 0a 1a 0a… (ie PNG…)

 Some types handled by browser itself
 Others require plugin or application
 Experimental MIME subtypes: x-
 application/x-gzip

Computer Science and Engineering  The Ohio State University

Email Exmple: Transfer Encoding
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.
--aFrontierString
Content-Type: text/plain

This is the body of the message.
--aFrontierString
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB
0aGUg
Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg==
--aFrontierString--

Computer Science and Engineering  The Ohio State University

Layered Encoding

content
(bits)

source
(image)

ffd8ffe000104a464946…

transfer encoded
(channel)
ASCII

/9j/4AAQSk…

Content-Type
image/jpeg

Content-Transfer-Encoding
???

Computer Science and Engineering  The Ohio State University

Encoding (Binary) Data in ASCII
 Binary data: Any byte value is possible
 00 to FF (i.e. xxxx xxxx)

 ASCII data: bytes start with 0
 00 to 7F (i.e. 0xxx xxxx)

 Problem: channel can carry only ASCII data
 Encoding must use ASCII alphabet (bytes that start with 0)

 Solution? Use Hex: 4 bits sent as 1 ASCII char
1101 0110 1100 1111 0010 0110
D 6 C F 2 6
 Problem?

Computer Science and Engineering  The Ohio State University

Encoding (Binary) Data in ASCII: Problem
 Binary data: Any byte value is possible
 00 to FF (i.e. xxxx xxxx)

 ASCII data: bytes start with 0
 00 to 7F (i.e. 0xxx xxxx)

 Problem: channel can carry only ASCII data
 Encoding must use ASCII alphabet (bytes that start with 0)

 Solution? Use Hex: 4 bits sent as 1 ASCII char
1101 0110 1100 1111 0010 0110
D 6 C F 2 6
 Problem?
0100 0100 0011 0110 0100 0011

D 6 C

Computer Science and Engineering  The Ohio State University

Quoted-Printable Encoding

 Observation: bytes that happen to be ASCII do not
need to be encoded
 If most data is text, savings are significant

 For each byte:
 If first bit is 0, do nothing
 If first bit is 1, encode with 3 bytes: =XY where XY is the

hex value of byte
 Limit line length to 76 characters
 Finish lines with "="
 Q: What if data contains the byte "="?

Computer Science and Engineering  The Ohio State University

Example

Computer Science and Engineering  The Ohio State University

Encoding Binary Data

 What if most data is not ASCII?
 Raw (base 256): 8 bits are a digit (1 byte), 1:1
1101 0110 1100 1111 0010 0110
? ? &

 Hex (base 16): 4 bits  1 digit (1 byte), ie 2x
1101 0110 1100 1111 0010 0110
D 6 C F 2 6

 Quoted-Printable: 8 bits  ~3 characters (3 bytes), ie ~3x
1101 0110 1100 1111 0010 0110
=D 6 =C F &

 Can we do better?

Computer Science and Engineering  The Ohio State University

Encoding Binary Data: Base 64

 What if most data is not ASCII?
 Raw (base 256): 8 bits are a digit (1 byte), 1:1
1101 0110 1100 1111 0010 0110
? ? &

 Hex (base 16): 4 bits  1 digit (1 byte), ie 2x
1101 0110 1100 1111 0010 0110
D 6 C F 2 6

 Base 64: 6 bits  1 digit (1 byte), ie 1.33x
1101 0110 1100 1111 0010 0110
1 s 8 m

Computer Science and Engineering  The Ohio State University

Base64 Alphabet

en.wikipedia.org/wiki/Base64

Computer Science and Engineering  The Ohio State University

Layered Encoding: Base64

transmission
(bits)

content
(bits)

source
(image)

ffd8ffe000104a464946…

2f396a2f344141536b…

encoded
(alphabet)

/9j/4AAQSk…

Content-Type
image/jpeg

Content-Transfer-Encoding
base64

ASCII

Computer Science and Engineering  The Ohio State University

Base64 Encoding

en.wikipedia.org/wiki/Base64

Computer Science and Engineering  The Ohio State University

Summary

 IP address are unique on network
 IPv4 vs IPv6

 DNS maps strings to IP addresses
 Domains nested hierarchically

 URLs identify resources on network
 Scheme, host, path

 MIME type defines a file’s encoding
 Correspondence
 Layered encodings are possible too

