HTTP:

Hypertext Transfer Protocol

Compu

Lecture 12

HTTP

Computer Science and Engineering B The Ohio State University

Hypertext Transfer Protocol

History

B Early 90's: developed at CERN, Tim Berners-Lee
1996: version 1.0

1999: version 1.1 (still ubiquitous today!)

2015: version 2
O Performance improvements: binary, server push...
O Backwards compatible

B 2022: version 3
O Performance improvements, same semantics
w3techs.com/technologies/overview/site element
Simple request/response (client/server)
B Client sends request to (web) server
B (Web) server responds
B Protocol itself is stateless

Anatomy of the Protocol

Client sends a request:

B Method: protocol identification

B Header fields: meta information about request
o (blank line)

B Body (optional): payload

Server sends a response

B Status

B Header fields: meta information about response

o (blank line)

B Body: payload

ASCII-based protocol

B First 3 lines are ASCII-only

B Newline (CRLF) as separator: method/status, headers, blank

Protocol: Request, Response

Computer Science and Engineering B The Ohio State University

Method
Header field 1
Header field 2

Body

Request

Response

Status

Header field 1
Header field 2
Header field 3

Body

Request: Method

1 Structure of first line: verb path version
B \Verb: GET, HEAD, POST, PUT, DELETE,..

B Path: part of URL (path and query)
scheme://FQDN:port/path?query#fragment

B \ersion: HTTP/1.1, HTTP/2, HTTP/3

1 Example:
®m For URL

http://www.osu.edu/academics#content

B First line of HTTP request is
GET /academics HTTP/1.1

Computer Science and Engineering B The Ohio State Universi

Request Methods

1 GET, HEAD

B Request: should be safe (no side effects)
B Request has header only (no body)

1 PUT
B Update (or create): should be idempotent

1 DELETE
B Delete: should be idempotent

1 POST

B Create (or update): changes server state
B Beware re-sending!

1 HTTP does not enforce these semantics

Request: Header Fields

Computer Science and Engineering B The Ohio State University

Each field is on its own line:
name: value

Examples

Host: www.osu.edu

Accept: text/*,image/apng

Accept-Language: en-US,en;qg=0.9

If-Modified-Since: Sat, 11 May 2024 19:43:31 GMT

Content-Length: 349

User-Agent: Mozilla/5.0 (X11l; Linux x86 64)
Chromel28.0.0.0 Safari/537.36

Names are not case-sensitive ("Accept"” or "accept")
Blank line indicates end of headers

Some Common Header Fields

Computer Science and Engineering B The Ohio State University

O Host
B The only required field
B Q: Why is host field even needed?
O Accept, Accept-Language, Accept-Encoding
B List of browser preferences for response
B MIME types, language locales, transfer encodings
B Priority based on order and g-value weight (0-1)
O If-Modified-Since
B Send payload only if changed since (GMT) date
O Content-Length
B Required if request has a body
B Number of bytes in body
O User-Agent
B Application making the request (browser, but not necessarily)

O Referer (misspelled in spec)
B Previous web page, ie "source" of this request

Example HTTP Request

Computer Science and Engineering B The Ohio State University

GET / HTTP/1.1
Host: www.osu.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu;..etc

Request

"Nobody knows you're a dog"

GET / HTTP/1.1
Host: www.osu.edu
User-Agent: Mozilla/5.0 (X11l; Ubuntu;..etc

Request

require 'mechanize'
agent = Mechanize.new
page = agent.get 'http://www.osu.edu'

Computer Science and Engineering B The Ohio State Universi

Demo: HTTP Request with telnet

Compute B The Ohio State University

O Example URL: http://www.osu.edu/academics

O At console
S telnet www.osu.edu 80 # opens connection

GET /academics HTTP/1.1
Host: www.osu.edu
<blank line>

HTTP Response Anatomy

Recall, four parts

1. Status (one line)

2. Header fields (separated by newlines)
3. Blank line

4. Body (i.e., payload)

Parts 1-2 collectively are the header

Status line syntax:
http-version status-code text

B Examples

HTTP/1.1 200 OK

HTTP/1.1 301 Moved Permanently
HTTP/1.1 404 Not Found

Taxonomy of Status Codes

Computer Science and Engineering B The Ohio State University

1xX Informational
2XX Success

3XX Redirection
4xX Client Error

5xx Server Error

Some Common Status Codes

Computer Science and Engineering B The Ohio State University

O 200 Success/OK
m Allis good!
B Response body is the requested document
O 301 (302) Permanent (Temporary) Redirect
B Requested resource is found somewhere else
B 301 means agent can go directly to the new location in the future

O 304 Not Modified

B Document hasn’t changed since date/time in If-Modified-Since field of
request

B No response body

O 404 Not Found

B Server could not satisfy the request

B [t is the client’s fault (design-by-contract?)
O 500 Internal Server Error

B Server could not satisfy the request

B [t is the server’s fault (design-by-contract?)

Response: Header Fields

O Each field on its own line, syntax:
name: value

O Examples
Date: Tue, 16 Sep 2025 17:31:18 GMT
Server: Apache/2.4.6 (Red Hat)
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip
Content-Length: 333

O Blank line indicates end of headers

Computer Science and Engineering B

Demo: Terminal (telnet)

O Redirects entail another telnet request

telnet www.osu.edu 80
GET /academics HTTP/1.1
Host: www.osu.edu

HTTP/1.1 301 Moved Permanently
Location: https://www.osu.edu/academics

O Plain-text http is increasingly rare

telnet www.osu.edu 443
GET /academics HTTP/1.1
Host: www.osu.edu

HTTP/1.1 400 Bad Request

Computer Science and Engineering B

HTTP Traffic Transparency

Computer Science and Engineering B The Ohio State University

Everything is visible to an eavesdropper

B HTTP headers are plain text

B HTTP payload may be binary

[0 protect communication, use encryption
B SSL, TLS: protocols to create secure channel
B Initial handshake between client and server

B Subsequent communication is encrypted

HTTP over secure channel = HTTPS
B Default port: 443

MFKM5D0O388HSshF1GfEr
x5PXsJk0hGVtiK8xoNf4

Request

Demo: HTTPS with openss|

Computer Science and Engineering B

Use openssl instead of telnet
B Negotiates initial handshake with server
B Handles encryption/decryption of traffic

Example URL https://www.osu.edu/

At console
S openssl s client -connect www.osu.edu:443

B Note connection to port 443 (standard for https)
Syntax of subsequent request is the same

Send the following HTTP request:
GET /academics HTTP/1.1

Host: www.osu.edu

<blank line>

Demo: Terminal (curl)

Computer Science and Engineering B The Ohio State University

O Better command-line tool: cURL
S curl -v www.osu.edu/academics # -v for verbose

B Handles redirection (-L), chunking, https, headers, ...
S curl -Li www.osu.edu/academics # follows redirect

B Explicitly set request headers (-H)
S curl https://www.osu.edu \
-A "Mozilla/5.0" \ # default user agent: curl/VER
-H "accept: text/html, text/plain" \
-H "accept-language: en-US,en;g=0.9"
O Very useful, Swiss Army knife, for network requests
S curl -V # see list of Protocols

Demo: Chrome Developer Tools

Computer ring ® The Ohio State University

1 Powerful inspection tool for web development
B Kabob > More Tools > Developer Tools (Ctrl+Shift+1I)
B See the Network tab

1 One GET can cause many HTTP requests by browser
http://www.osu.edu/academicsi#content
1 For each request, inspect:
B Request method, headers
B Response status code, and headers
B Response body (and preview)

1 To reproduce a request:
B Right click, Copy > Copy as cURL

Demo: Using Ruby

Computer Science and Engineering B The Ohio State University

Mechanize: A Ruby gem that acts like a browser
require 'mechanize'
Create an agent to send requests
agent = Mechanize.new do |a|
a.user agent alias = 'Mac Safari'
end

Use agent to issue a request
page = agent.get 'http://news.osu.edu’

Follow links, submit forms, etc

h = page.link with(text: /Top/) .click
f = page.forms[0]

f.field with(name: 'q') .value
s = f.submit

'"CSE'

HTTP is Stateless

1 Every request looks the same

1 But maintaining state between requests is useful:
B First user logs in, then able to GET account info
B Shopping cart “remembers” contents

1 Solution: Keep a shared secret

B Server's first response contains a unique session identifier
(a long random value)

B Subsequent requests from this client include this secret
value

B Server recognizes the secret value, request must have
come from original client

HTTP Session (4)

Computer Science and Engineering B The Ohio State University

Request
2 A | Store secret
@ - 222 B
Response = iy 2 '

Secret: 38afes7a8

Request
id: 38afes7a8

T —

Response

38afes7a8

Check id

Request
id: 38afes7a8

T —

Response

Check id

Computer Science and Engineering B The Ohio State University

Popular mechanism for session manag’nt

Set in response header field

Set-Cookie: session=38afes7a8

B Any name/value is ok

B Options: expiry, require https

Client then includes cookie(s) in any subsequent request
to that domain

Sent in request header field:
Cookie: session=38afes77a8

Cookies also used for
B Tracking/analytics: What path did they take?
B Personalization

Summary

1 HTTP: request/response

1 Anatomy of request

B Methods: GET, PUT, DELETE, POST
B Headers

B Body: arguments of POST

1 Anatomy of response
B Status Codes: 200, 301, 404, etc
B Headers
B Body: payload
1 Tools
B Curl, Developer Tools, Mechanize

