Working With Web APIs

Lecture 13

Computer Science and Engineering B College of Engineering B The Ohio State University

Passing arguments in HTTP: GET

The Ohio State University

1 Arguments are key-value pairs

Mascot: Brutus Buckeye
Dept: CS&E

1 Encoded in the guery string of a URL
scheme: //FQDN:port/path?query#fragment
1 Encoding: application/x-www-form-urlencoded

B Key-value pairs are separated by & (or ;)
B Each key is separated from value by =
B Replace spaces with + (arcane!)

B Then normal URL encoding (using)
Mascot=Brutus Buckeyeé&Dept=CS E

Examples

1 Wikipedia search
http://en.wikipedia.org/w/index.php”~
search=ada+lovelace

1 OSU news articles
https://news.osu.edu/"?

g=Goldwateré&search.x=1l&search.y=0

1 Random passwords from random.org
https://random.org/passwords/?
num=5&len=8&format=plain
B Demo: use Chrome dev tools to "Copy as cURL"
B See guidelines and API for http clients

Passing Arguments in HTFP POST

Encoded as part of the request body

Advantages over query string:

B Arbitrary length (URL length is limited)

B Arguments are not saved in browser history
B Result is not cached by browser
o

Arguments are less likely to be accidentally shared (eg not part
of URL, won't be bookmarked), so slightly more secure
Content-Type indicates encoding of body
B application/x-www-form-urlencoded
O Same encoding as used with GET and query string
B multipart/form-data
O Better for binary data than urlencoding (where 1 byte - 3 bytes)

B More options too:
[0 application/xml, application/json, ...

Passing Arguments: GET vs POST

Computer S e Ohio State University

O GET
GET /passwords/?num=5&len=8&format=plain HTTP/1l.1

Host: www.random.org

O POST
POST /passwords/ HTTP/1.1

Host: www.random.org
Content-Type: application/x-www-form-urlencoded

Content-Length: 24

num=5&len=8&format=plain

Passing Arguments: Summary

Compu

1 Arguments in GET requests

B Uses request query string

B Limited length, highly visible (eg in location bar)

B Encoded with application/x-www-form-urlencoded
1 Arguments in POST requests

B Uses request body

B No size limit, not bookmarked

B Choice for content type (ie encoding), most commonly:
[0 application/x-www-form-urlencoded

0 multipart/form-data
[0 application/json

JSON

1 JavaScript Object Notation

1 String-based representation of a value
B Serialization: converting value -> string
B Deserialization: converting string -> value

1 Easy enough for people to read
1 Really designhed for computers to parse

B The lingua franca for transfer of (object) values via HTTP
B Used both ways: request arguments and responses

1 MIME type: application/json

JSON Has Six Data Types

[ext: a string, "..."
"hellO", "T Sald \"hi\"", 113.411’ mwon

Number: integer or floating point
6, -3.14, 6.022e23

Boolean

true, false

Null

null

Array: ordered list of values, [...]
[31 2/ 1/ "go"]I [[11 3]/ [7/ _2]]

Object: set of name/value pairs, {...}
B Names are text

B Values are any JSON type (text, number, array, object...)
{"mascot": "Brutus'", "age": 19, "nut": true}

Example

{"current page":1l,"1limit":20,"next page":1l,"pre
vious page'":1l,"results":[{"1d":"GLGBIYOwAAd",6 "]
oke'" : "How much does a hipster weigh? An
instagram."}, {"1d" :"xc21Lmbxcib", "joke" : "How
did the hipster burn the roof of his mouth? He
ate the pizza before it was

cool."}],"search term":"hipster", "status":200,"
total jokes":2,"total pages":1l}

Example: Same Value

Computer Science and Engineering B The Ohio State University

"current page": 1,
"limit": 20,

"next page": 1,
"previous page": 1,

"results": [
{
"id": "GLGBIYOwAAd",
"joke": "How much does a hipster weigh? An instagram."
b
{
"id": "xc2lLmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the pizza before it was cool."
}
1,
"search term": "hipster",

"status": 200,
"total jokes": 2,
"total pages": 1

Example: Same Value

Computer Science and Engineering B The Ohio State University

"current page": 1,
"limit": 20,

"next page": 1,
"previous page": 1,

"results": [
{
"id": "GLGBIYOwAAd",
"joke": "How much does a hipster weigh? An instagram."
b
{
"id": "xc2lLmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the pizza before it was cool."
}
1,
"search term": "hipster",

"status": 200,
"total jokes": 2,
"total pages": 1

Example

{"current page":1l,"1limit":20,"next page":1l,"pre
vious page'":1l,"results":[{"1d":"GLGBIYOwAAd",6 "]
oke'" : "How much does a hipster weigh? An
instagram."}, {"1d" :"xc21Lmbxcib", "Jjoke" : "How
did the hipster burn the roof of his mouth? He
ate the pizza before it was

cool."}],"search term":"hipster", "status":200,"
total jokes":2,"total pages":1l}

JSON Syntax

Computer Science and Engineering B The Ohio State University

1 Very similar to hash literal in Ruby
B Syntax looks identical to hash, array, number, boolean
{"dept": "CSE", "class": 3901, '"days": [1, 3, 5]}
B Spaces and newlines don't matter

1 But there are important differences!

B Object keys are strings (not symbols, or other types)
0 "dept": Nnot dept:

B Strings must be double quoted (not single)
[0 "CSE" not 'CSE’

B No comments

Example: Data Access

Computer Science and Engineering B The Ohio State University

"current page": 1,
"limit": 20,

"next page": 1,
"previous page": 1,

"results": [
{
"id": "GLGBIYOwAAd",
"joke": "How much does a hipster weigh? An instagram."
b
{
"id": "xc2lLmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the pizza before it was cool."
}
1,
"search term": "hipster",

"status": 200,
"total jokes": 2,
"total pages": 1

In ruby, how do we find the id of the second joke?

(De)serialization in Ruby

O Get JSON from an object

JSON.generate ([0x10, true, :age, 'hi'])
=> "[16, true, \ nage\ u, \ "hi\ n] n
JSON.generate ({mascot: "Brutus", nut: true})
=> "{\"mascot\":\"Brutus\",\"nut\":true}"

O Get an object from JSON
s = "{\"zips\": [43210, 43211]}"
JSON.parse (s)
#=> {'zips' => [43210, 43211]}
JSON.parse (s, symbolize names: true)
#=> {(:zips => [43210, 43211]}

Alternatives

1 JSON is readable

B Sometimes used for configuration files
O VSCode: .vscode/settings. json

[1 .markdownlint. json, devcontainer. json,...
1 But JSON isn't very human-friendly
B No comments
B Visual clutter with lots of " marks

1 Alternatives, when readability matters
B YAML: Yet Another Markup Language
B JSONC: JSON with comment, not standardized/universal

Web APIs

Computer Science and Engineering B The Ohio State University

1 An API contains endpoints, each of which is:
B A URL path and a verb (GET or POST)

B Required/accepted arguments

B Returned value (often JSON)

Roughly equivalent to a method signature

Many ways to call an endpoint

B Command line: curl

B Tool: Postman, VSCode extensions rest-client,...
B Ruby client gem: Faraday, Net::HTTP, httpx,...

B Client library provided by the service itself: octokit for
GitHub, stripe-ruby for Stripe,...

L

L

Example APIs

O Dad Jokes

B https://icanhazdadjoke.com/api

O Canvas (ie Carmen)

B https://canvas.instructure.com/doc/api/

O US National Weather Service

B https://www.weather.gov/documentation/services-web-api
O US Census Bureau

B https://www.census.gov/data/developers/data-sets.html

O GitHub

B https://docs.qgithub.com/en/rest

O And many, many more...
B https://github.com/public-apis/public-apis

Demo: Calling an API

Computer Science and Engineering B The Ohio State University

O Command line (curl) to find dad jokes

$ curl https://icanhazdadjoke.com/search?term=computer

$ curl https://icanhazdadjoke.com/search?term=computer \
-H "Accept: application/json"

O Browser to call Carmen API

https://osu.instructure.com/api/vl/courses
https://osu.instructure.com/api/vl/courses?per page=50

O Ruby gem (HTTPX) to find dad jokes
require 'httpx’
resp = HTTPX.get('https://icanhazdadjoke.com',
headers: {'accept' => 'application/json'})

puts resp.body
puts resp.json|['joke']

API Key

Computer Science and Engineering B The Ohio State University

1 Service may require a key to use
B Register with service, get a secret token (a long random

number or string)
8497~Xd0aaaaaIMadeThisUpzzzz

B Include this token in every HTTP request, eg using the

Authorization header
Authorization: Bearer 8497~Xd0aaaaaIMadeThisUpzzzz

1 Rule: never share or commit your secret token!

B Treat it like a password

B Dilemma: Your code needs to use it, so it needs to be
stored somewhere...

One Strategy: Environment Variables

Computer Science and Engineering B The Ohio State University

First: Keep .env file out of commits!
.gitignore
env

Thén: Create the .env file for secret(s)

.env
CANVAS TOKEN=8497~Xd0aaaaaIMadeThisUpzzzz

Helpful: Create a sample .env file with dummy value(s)

.env.template
CANVAS TOKEN=CANVAS TOKEN SECRET

Use environment variable(s) in client code

require 'dotenv' # useful gem for reading .env files
Dotenv. load # creates ENV hash of values in .env
auth = "Bearer #{ENV['CANVAS TOKEN']}"

req.header['Authorization'] = auth # set Auth header

Getting an API Key

1 GitHub
B Login, Settings > Developer Settings
B Personal access tokens > Tokens
1 Canvas
B Login, Account > Settings
B Approved Integrations, "+ New Access Token"

1 Use a meaningful name for token
1 Value typically shown just one time

Summary

1 Passing arguments
B GET: query string (url-encoded)
B POST: body (several different encodings)

1 JSON
B Syntax for describing values
B Just a few basic types (object, array, text, number...)
B Useful for (de)serialization, while also human-readable

1 API endpoints
B Response body is often JSON

1 API keys

B Protect secrets, eg with private .env file
B Use in request header to legitimize source

