
Computer Science and Engineering  College of Engineering  The Ohio State University

Working With Web APIs

Lecture 13

Computer Science and Engineering  The Ohio State University

Passing arguments in HTTP: GET

 Arguments are key-value pairs
Mascot: Brutus Buckeye
Dept: CS&E

 Encoded in the query string of a URL
scheme://FQDN:port/path?query#fragment

 Encoding: application/x-www-form-urlencoded
 Key-value pairs are separated by & (or ;)
 Each key is separated from value by =
 Replace spaces with + (arcane!)
 Then normal URL encoding (using %hh)
Mascot=Brutus+Buckeye&Dept=CS%26E

Computer Science and Engineering  The Ohio State University

Examples

 Wikipedia search
http://en.wikipedia.org/w/index.php?

search=ada+lovelace

 OSU news articles
https://news.osu.edu/?

q=Goldwater&search.x=1&search.y=0

 Random passwords from random.org
https://random.org/passwords/?
num=5&len=8&format=plain

 Demo: use Chrome dev tools to "Copy as cURL"
 See guidelines and API for http clients

Computer Science and Engineering  The Ohio State University

Passing Arguments in HTTP: POST
 Encoded as part of the request body
 Advantages over query string:
 Arbitrary length (URL length is limited)
 Arguments are not saved in browser history
 Result is not cached by browser
 Arguments are less likely to be accidentally shared (eg not part

of URL, won't be bookmarked), so slightly more secure
 Content-Type indicates encoding of body
 application/x-www-form-urlencoded

 Same encoding as used with GET and query string
 multipart/form-data

 Better for binary data than urlencoding (where 1 byte  3 bytes)
 More options too:

 application/xml, application/json, …

Computer Science and Engineering  The Ohio State University

Passing Arguments: GET vs POST

 GET
GET /passwords/?num=5&len=8&format=plain HTTP/1.1
Host: www.random.org

 POST
POST /passwords/ HTTP/1.1
Host: www.random.org
Content-Type: application/x-www-form-urlencoded
Content-Length: 24

num=5&len=8&format=plain

Computer Science and Engineering  The Ohio State University

Passing Arguments: Summary

 Arguments in GET requests
 Uses request query string
 Limited length, highly visible (eg in location bar)
 Encoded with application/x-www-form-urlencoded

 Arguments in POST requests
 Uses request body
 No size limit, not bookmarked
 Choice for content type (ie encoding), most commonly:
 application/x-www-form-urlencoded
 multipart/form-data
 application/json

Computer Science and Engineering  The Ohio State University

JSON

 JavaScript Object Notation
 String-based representation of a value
 Serialization: converting value -> string
 Deserialization: converting string -> value

 Easy enough for people to read
 Really designed for computers to parse
 The lingua franca for transfer of (object) values via HTTP
 Used both ways: request arguments and responses

 MIME type: application/json

Computer Science and Engineering  The Ohio State University

JSON Has Six Data Types
 Text: a string, "…"

"hello", "I said \"hi\"", "3.4", ""
 Number: integer or floating point

6, -3.14, 6.022e23
 Boolean

true, false
 Null

null

 Array: ordered list of values, […]
[3, 2, 1, "go"], [[1, 3], [7, -2]]

 Object: set of name/value pairs, {…}
 Names are text
 Values are any JSON type (text, number, array, object…)

{"mascot": "Brutus", "age": 19, "nut": true}

Computer Science and Engineering  The Ohio State University

Example

{"current_page":1,"limit":20,"next_page":1,"pre
vious_page":1,"results":[{"id":"GlGBIY0wAAd","j
oke":"How much does a hipster weigh? An
instagram."},{"id":"xc21Lmbxcib","joke":"How
did the hipster burn the roof of his mouth? He
ate the pizza before it was
cool."}],"search_term":"hipster","status":200,"
total_jokes":2,"total_pages":1}

Computer Science and Engineering  The Ohio State University

Example: Same Value
{
"current_page": 1,
"limit": 20,
"next_page": 1,
"previous_page": 1,
"results": [
{
"id": "GlGBIY0wAAd",
"joke": "How much does a hipster weigh? An instagram."

},
{
"id": "xc21Lmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the pizza before it was cool."

}
],
"search_term": "hipster",
"status": 200,
"total_jokes": 2,
"total_pages": 1

}

Computer Science and Engineering  The Ohio State University

Example: Same Value
{
"current_page": 1,
"limit": 20,
"next_page": 1,
"previous_page": 1,
"results": [
{
"id": "GlGBIY0wAAd",
"joke": "How much does a hipster weigh? An instagram."

},
{
"id": "xc21Lmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the pizza before it was cool."

}
],
"search_term": "hipster",
"status": 200,
"total_jokes": 2,
"total_pages": 1

}

Computer Science and Engineering  The Ohio State University

Example

{"current_page":1,"limit":20,"next_page":1,"pre
vious_page":1,"results":[{"id":"GlGBIY0wAAd","j
oke":"How much does a hipster weigh? An
instagram."},{"id":"xc21Lmbxcib","joke":"How
did the hipster burn the roof of his mouth? He
ate the pizza before it was
cool."}],"search_term":"hipster","status":200,"
total_jokes":2,"total_pages":1}

Computer Science and Engineering  The Ohio State University

JSON Syntax

 Very similar to hash literal in Ruby
 Syntax looks identical to hash, array, number, boolean
{"dept": "CSE", "class": 3901, "days": [1, 3, 5]}

 Spaces and newlines don't matter
 But there are important differences!
 Object keys are strings (not symbols, or other types)
 "dept": not dept:

 Strings must be double quoted (not single)
 "CSE" not 'CSE'

 No comments

Computer Science and Engineering  The Ohio State University

Example: Data Access
{
"current_page": 1,
"limit": 20,
"next_page": 1,
"previous_page": 1,
"results": [
{
"id": "GlGBIY0wAAd",
"joke": "How much does a hipster weigh? An instagram."

},
{
"id": "xc21Lmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the pizza before it was cool."

}
],
"search_term": "hipster",
"status": 200,
"total_jokes": 2,
"total_pages": 1

}

In ruby, how do we find the id of the second joke?

Computer Science and Engineering  The Ohio State University

(De)serialization in Ruby

 Get JSON from an object
JSON.generate ([0x10, true, :age, 'hi'])
#=> "[16,true,\"age\",\"hi\"]"

JSON.generate ({mascot: "Brutus", nut: true})
#=> "{\"mascot\":\"Brutus\",\"nut\":true}"

 Get an object from JSON
s = "{\"zips\": [43210, 43211]}"
JSON.parse(s)
#=> {'zips' => [43210, 43211]}

JSON.parse(s, symbolize_names: true)
#=> {:zips => [43210, 43211]}

Computer Science and Engineering  The Ohio State University

Alternatives

 JSON is readable
 Sometimes used for configuration files
 VSCode: .vscode/settings.json
 .markdownlint.json, devcontainer.json,…

 But JSON isn't very human-friendly
 No comments
 Visual clutter with lots of " marks

 Alternatives, when readability matters
 YAML: Yet Another Markup Language
 JSONC: JSON with comment, not standardized/universal

Computer Science and Engineering  The Ohio State University

Web APIs

 An API contains endpoints, each of which is:
 A URL path and a verb (GET or POST)
 Required/accepted arguments
 Returned value (often JSON)

 Roughly equivalent to a method signature
 Many ways to call an endpoint
 Command line: curl
 Tool: Postman, VSCode extensions rest-client,…
 Ruby client gem: Faraday, Net::HTTP, httpx,…
 Client library provided by the service itself: octokit for

GitHub, stripe-ruby for Stripe,…

Computer Science and Engineering  The Ohio State University

Example APIs

 Dad Jokes
 https://icanhazdadjoke.com/api

 Canvas (ie Carmen)
 https://canvas.instructure.com/doc/api/

 US National Weather Service
 https://www.weather.gov/documentation/services-web-api

 US Census Bureau
 https://www.census.gov/data/developers/data-sets.html

 GitHub
 https://docs.github.com/en/rest

 And many, many more…
 https://github.com/public-apis/public-apis

Computer Science and Engineering  The Ohio State University

Demo: Calling an API

 Command line (curl) to find dad jokes
$ curl https://icanhazdadjoke.com/search?term=computer
$ curl https://icanhazdadjoke.com/search?term=computer \

-H "Accept: application/json"

 Browser to call Carmen API
https://osu.instructure.com/api/v1/courses
https://osu.instructure.com/api/v1/courses?per_page=50

 Ruby gem (HTTPX) to find dad jokes
require 'httpx'
resp = HTTPX.get('https://icanhazdadjoke.com',

headers: {'accept' => 'application/json'})
puts resp.body
puts resp.json['joke']

Computer Science and Engineering  The Ohio State University

API Key

 Service may require a key to use
 Register with service, get a secret token (a long random

number or string)
8497~Xd0aaaaaIMadeThisUpzzzz

 Include this token in every HTTP request, eg using the
Authorization header
Authorization: Bearer 8497~Xd0aaaaaIMadeThisUpzzzz

 Rule: never share or commit your secret token!
 Treat it like a password
 Dilemma: Your code needs to use it, so it needs to be

stored somewhere…

Computer Science and Engineering  The Ohio State University

One Strategy: Environment Variables
 First: Keep .env file out of commits!

.gitignore
.env

 Then: Create the .env file for secret(s)
.env
CANVAS_TOKEN=8497~Xd0aaaaaIMadeThisUpzzzz

 Helpful: Create a sample .env file with dummy value(s)
.env.template
CANVAS_TOKEN=CANVAS_TOKEN_SECRET

 Use environment variable(s) in client code
require 'dotenv' # useful gem for reading .env files
Dotenv.load # creates ENV hash of values in .env
auth = "Bearer #{ENV['CANVAS_TOKEN']}"
req.header['Authorization'] = auth # set Auth header

Computer Science and Engineering  The Ohio State University

Getting an API Key

 GitHub
 Login, Settings > Developer Settings
 Personal access tokens > Tokens

 Canvas
 Login, Account > Settings
 Approved Integrations, "+ New Access Token"

 Use a meaningful name for token
 Value typically shown just one time

Computer Science and Engineering  The Ohio State University

Summary
 Passing arguments
 GET: query string (url-encoded)
 POST: body (several different encodings)

 JSON
 Syntax for describing values
 Just a few basic types (object, array, text, number…)
 Useful for (de)serialization, while also human-readable

 API endpoints
 Response body is often JSON

 API keys
 Protect secrets, eg with private .env file
 Use in request header to legitimize source

