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HTML

 Hypertext Markup Language
 Key ideas:

1. Connect documents via (hyper)links
 Visual point-and-click to get a new document
 Distributed, decentralized set of documents

2. Describe content of document, not style
 Structure of document from semantics
 Separation of concerns: style vs content

 Rephrasing these key ideas:
1. Hypertext
2. Markup
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Markup: Describing Content
 WYSIWYG
 A paragraph or bulleted list in MS Word 
 Benefits:

 No surprises in final appearance
 Quick and easy
 Control: Author can use visual elements to stand in for structural 

elements
 WYSIWYM
 A paragraph or list in LaTeX
 Benefits:

 More information in document (visual & semantic)
 Lack of Control: Author doesn't know how to apply visual elements 
properly for structure
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Abstraction vs Representation

\section{To Do List}
\begin{enumerate}
\item{Study for midterm}
\item{Sleep}

\end{enumerate}
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Problem: Authors Lack Requisite Expertise

Iteration D1: Finding a Cart

As users browse our online catalog, they will (we hope) select
products to buy. The convention is that each item selected will be added
to a virtual shopping cart, held in our store. At some point, our buyers
will have everything they need and will proceed to our site’s checkout,
where they’ll pay for the stuff in their carts.

This means that our application will need to keep track of all the
items added to the cart by the buyer. To do that, we’ll keep a cart in the
database and store its unique identifier, cart.id, in the session. Every
time a request comes in, we can recover that identifier from the session
and use it to find the cart in the database.
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Evolution of HTML
 HTML (Berners-Lee, early 90's)
 HTML 2.0 (W3C, '95)
 HTML 3.2 (W3C, '97)
 HTML 4.0 (W3C, '97)

 To form a more perfect union…
 HTML 4.01 (W3C, '99)

 To smooth out the edges… big dog for years
 The great schism

 W3C: XHTML 1.0 ('00), 1.1 ('01), 2.0
 Everyone else: HTML Forms, WHAT…

 Capitulation ('09): W3C abandons XHTML 2.0
 HTML5 (W3C, 2014), 5.1, 5.2, … snapshots of WHATWG standard
 Since 2019: W3C backs WHATWG's HTML “Living Standard”

 html.spec.whatwg.org/dev
 All W3C versions (including HTML5) retired in 2021
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Page Validation

 Design-by-contract:
 Weak requires, but strong ensures
 Permissive in input, but strict in output

 Browsers (taking HTML as input) are permissive
 “Tag soup” still renders

 Web authors (writing HTML as output) should be as 
strict as possible
 But permissive browsers hide errors!

 Solution: use a validator
 See validator.w3.org
 Checks for syntax problems only
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Example HTML Source
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello <a href="planet.html">World</a>!
<br />
<img src="pic.png" alt="a globe" />

</p> 
</body>

</html>
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Example Rendered
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello <a href="planet.html">World</a>!
<br />
<img src="pic.png" alt="a globe" />

</p> 
</body>

</html>
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Example Rewritten
<!DOCTYPE html> <html lang="en"> <head> <title>Something 
Short and Sweet</title> <meta charset="utf-8" /> </head> 
<body> <p> Hello <a href="planet.html">World</a>! <br /> <img 
src="pic.png" alt="a globe" /> </p> </body> </html>
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Type Declaration
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello <a href="planet.html">World</a>!
<br />
<img src="pic.png" alt="a globe" />

</p> 
</body>

</html>
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Choices for Document Type

 HTML 5
<!DOCTYPE html>

 HTML 4.01
<!DOCTYPE HTML

PUBLIC "-//W3C//DTD HTML 4.01//EN" 
"http://www.w3.org/TR/html4/strict.dtd">

 XHTML 1.0 Strict
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
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Type Declaration for HTML 5
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello <a href="planet.html">World</a>!
<br />
<img src="pic.png" alt="a globe" />

</p> 
</body>

</html>
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Element Tags: Nested Start/End
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello <a href="planet.html">World</a>!
<br />
<img src="pic.png" alt="a globe" />

</p> 
</body>

</html>

start tag
content
end tag
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Structure: Nesting of Elements

html
lang: en

head body

title meta
charset: utf-8

p

a
href: planet.html

Something Short 
and Sweet

Hello

element
attr name:
attr value
content

World

! br img
src: pic.png
ald: a globe
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Attributes: Name/Value Pairs
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello <a href="planet.html">World</a>!
<br />
<img src="pic.png" alt="a globe" />

</p> 
</body>

</html>
codepen.io/cse3901/pen/MWNwqZQ



Computer Science and Engineering   The Ohio State University

Structure of Example

html
lang: en

head body

title meta
charset: utf-8

p

a
href: planet.html

Something Short 
and Sweet

Hello

element
attr name:
attr value
text

World

! br img
src: pic.png
alt: a globe
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HTML Entities
 Familiar problem: Encoding
 Is <br /> a tag or (literal) content?
 Meta-characters (e.g. '<') need to be escaped

 HTML entities represent a literal
&#dddd;

 Where dddd is the “unicode code point” (as a decimal number)
&#xhhhh;

 Where hhhh is the code point in hex
&name;

 Where name is from a small set (lt, gt, amp…)
 Examples:

&#60;  &#0060;  &#x3C;  &#x03c;  &lt;
&#9829;  &#x2665;  &hearts;
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Kinds of Elements
1. Top-level document structure elements
 The root of tree is <html>
 The root has two children: <head>, <body>

2. Head elements
 (Meta) information about document

3. Body elements, (roughly) two kinds:
1. Block
 Content that stands alone
 Starts new line of text (interrupts the “flow”)
 May contain other elements (block or inline)

2. Inline (aka phrasing)
 Intimately part of surrounding context
 Does not interrupt “flow” of text
 May contain other inline elements
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HTML 5 Content Model

https://www.w3.org/TR/2011/WD-html5-20110525/content-models.html#kinds-of-content

paragraphs,
blocks

text, inline,
intra-paragraph
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Block vs Inline

flow

blocks

inline

body

heading

paragraph

horz rule
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Required Structure for HTML5

html
lang: en

head body

title meta
charset: utf-8

element
attr name:
attr value
text
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Common Head Elements
 <title>: required, must be only text
 May be displayed in window title bar

 <script>: client-side code to run
 <link>: other documents to use
 Commonly used for style information

 <meta>: information about the information (document)
 <meta http-equiv="…" content="…" /> can become a header 

field in HTTP response!
<meta http-equiv="Content-Type" content=
<meta http-equiv="Location" content=…
<meta http-equiv="Last-modified" content=…

 <meta name="keywords" content="…" />
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Common Block Elements in Body
 Text
 Paragraph <p>, horizontal rule <hr>
 Headings <h1> <h2> … <h6>
 Preformatted <pre>, quotations <blockquote>

 Lists
 Ordered <ol>, unordered <ul>, definition <dl>
 Item in list <li> (<dt> <dd> for definitions)

 Table <table>
 Form <form> (and some form elements)
 Sectioning (HTML 5)
 Article <article>, section <section>
 Header <header>, footer <footer>
 Canvas <canvas>

 Generic container for flow content <div>
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Common Inline Elements
 Anchor <a>
 Phrasing and text
 Emphasis <em>, strong emphasis <strong>
 Code snippet <code>
 Inline quotation <q>
 Inserted text <ins>, deleted text <del>

 Image <img>
 Form elements
 Generic container within flow content <span>
 Visual markup: deprecated
 Bold <b>, italic <i>, underline <u>
 Typewriter font <tt>
 Font control <font>
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And Don't Forget Comments

 Comments set off by <!-- …   -->
 Beware: they do not nest
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Tables

 Row <tr>
 Cell of data <td>
 Header cell (for row or column) <th>
 Caption <caption>
 And some more exotic ones too
 Header (repeat if splitting) <thead>
 Body <tbody>
 Footer (repeat if splitting) <tfoot>
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Table Example
<table>
<caption> Important Dates in CSE 3901 </caption>
<tr> <th scope="col">Quiz</th>

<th scope="col">Day, time</th>
</tr>
<tr> <th scope="row">Midterm 1</th>

<td> Friday, Sept 21, in class</td>
</tr>
<tr> <th scope="row">Midterm 2</th>

<td> Monday, Oct 22, in class</td>

</tr>
<tr> <th scope="row">Final</th>

<td> Wednesday Dec 12,
12:00&ndash;1:45 </td>

</tr>
</table>
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Table Example Rendered
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Hyperlinks

 Anchor tag with href attribute
<a href=…>some text</a>

some text
 Clickable element
 Click results in: an HTTP request
 GET request
 URL from value of href attribute

 What about arguments?
 Must be “hard coded” in attribute value
<a href="summary?lang=en">notes</a>
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Forms
 General mechanism for client to make HTTP requests
 GET or POST
<form action="path" method="get">
 HTTP arguments come from nested inputs
<input… name="color">

 User input: <input name="…" type="…"… />
 Text fields <input type="text"…
 Radio buttons <input type="radio"…
 Checkboxes <input type="checkbox"…
 Hidden <input type="hidden"…

 Button <button type="…">
 Default type is submit, which sends the request

 Information (not input): <label>
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Example
<form action="/my-handling-form-page" method="post">

<div>
<label for="name">Mascot:</label>
<input type="text" id="name" name="mascot_name" />

</div>
<div>

<label for="mail">E-mail:</label>
<input type="email" id="mail" name="mascot_mail" />

</div>
<div>

<label for="msg">Message:</label>
<textarea id="msg" name="message"></textarea>

</div>

<div class="button">
<button>Send your message</button>

</div>
</form>

codepen.io/cse3901/pen/VwxQPyy
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Form Rendered
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Form Modified by User
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Form Submitted
 When button (with type submit) is clicked
 HTTP request is sent, with
 Verb per form's method
 URL per form's action
 Arguments per form's inputs

 Input's name attribute is the argument name
 Value (usually user controllable) is the argument value

 Example:
POST /my-handling-form-page HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 68

mascot_name=Brutus&mascot_mail=buckeye%40osu.edu
&message=hello+world
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Summary

 Evolution of HTML: HTML 5
 Tension between permissive and strict
 Page validation

 An HTML document is a tree
 Elements are nodes, text is leaves
 Elements have attributes

 Head elements: meta information
 Body elements: content
 Block elts: para, heading, list, table, div
 Inline elts: anchor, img, emphasis, span

 Forms: user-controlled HTTP params


