
Computer Science and Engineering  College of Engineering  The Ohio State University

HTML:
Hypertext Markup Language

Lecture 15

Computer Science and Engineering  The Ohio State University

HTML

 Hypertext Markup Language
 Key ideas:

1. Connect documents via (hyper)links
 Visual point-and-click to get a new document
 Distributed, decentralized set of documents

2. Describe content of document, not style
 Structure of document from semantics
 Separation of concerns: style vs content

 Rephrasing these key ideas:
1. Hypertext
2. Markup

Computer Science and Engineering  The Ohio State University

Markup: Describing Content
 WYSIWYG
 A paragraph or bulleted list in MS Word
 Benefits:

 No surprises in final appearance
 Quick and easy
 Control: Author can use visual elements to stand in for structural

elements
 WYSIWYM
 A paragraph or list in LaTeX
 Benefits:

 More information in document (visual & semantic)
 Lack of Control: Author doesn't know how to apply visual elements
properly for structure

Computer Science and Engineering  The Ohio State University

Abstraction vs Representation

\section{To Do List}
\begin{enumerate}
\item{Study for midterm}
\item{Sleep}

\end{enumerate}

Computer Science and Engineering  The Ohio State University

Problem: Authors Lack Requisite Expertise

Iteration D1: Finding a Cart

As users browse our online catalog, they will (we hope) select
products to buy. The convention is that each item selected will be added
to a virtual shopping cart, held in our store. At some point, our buyers
will have everything they need and will proceed to our site’s checkout,
where they’ll pay for the stuff in their carts.

This means that our application will need to keep track of all the
items added to the cart by the buyer. To do that, we’ll keep a cart in the
database and store its unique identifier, cart.id, in the session. Every
time a request comes in, we can recover that identifier from the session
and use it to find the cart in the database.

Computer Science and Engineering  The Ohio State University

Evolution of HTML
 HTML (Berners-Lee, early 90's)
 HTML 2.0 (W3C, '95)
 HTML 3.2 (W3C, '97)
 HTML 4.0 (W3C, '97)

 To form a more perfect union…
 HTML 4.01 (W3C, '99)

 To smooth out the edges… big dog for years
 The great schism

 W3C: XHTML 1.0 ('00), 1.1 ('01), 2.0
 Everyone else: HTML Forms, WHAT…

 Capitulation ('09): W3C abandons XHTML 2.0
 HTML5 (W3C, 2014), 5.1, 5.2, … snapshots of WHATWG standard
 Since 2019: W3C backs WHATWG's HTML “Living Standard”

 html.spec.whatwg.org/dev
 All W3C versions (including HTML5) retired in 2021

Computer Science and Engineering  The Ohio State University

Page Validation

 Design-by-contract:
 Weak requires, but strong ensures
 Permissive in input, but strict in output

 Browsers (taking HTML as input) are permissive
 “Tag soup” still renders

 Web authors (writing HTML as output) should be as
strict as possible
 But permissive browsers hide errors!

 Solution: use a validator
 See validator.w3.org
 Checks for syntax problems only

Computer Science and Engineering  The Ohio State University

Example HTML Source
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello World!

</p>
</body>

</html>

Computer Science and Engineering  The Ohio State University

Example Rendered
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello World!

</p>
</body>

</html>

Computer Science and Engineering  The Ohio State University

Example Rewritten
<!DOCTYPE html> <html lang="en"> <head> <title>Something
Short and Sweet</title> <meta charset="utf-8" /> </head>
<body> <p> Hello World!
 <img
src="pic.png" alt="a globe" /> </p> </body> </html>

Computer Science and Engineering  The Ohio State University

Type Declaration
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello World!

</p>
</body>

</html>

Computer Science and Engineering  The Ohio State University

Choices for Document Type

 HTML 5
<!DOCTYPE html>

 HTML 4.01
<!DOCTYPE HTML

PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

 XHTML 1.0 Strict
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Computer Science and Engineering  The Ohio State University

Type Declaration for HTML 5
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello World!

</p>
</body>

</html>

Computer Science and Engineering  The Ohio State University

Element Tags: Nested Start/End
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello World!

</p>
</body>

</html>

start tag
content
end tag

Computer Science and Engineering  The Ohio State University

Structure: Nesting of Elements

html
lang: en

head body

title meta
charset: utf-8

p

a
href: planet.html

Something Short
and Sweet

Hello

element
attr name:
attr value
content

World

! br img
src: pic.png
ald: a globe

Computer Science and Engineering  The Ohio State University

Attributes: Name/Value Pairs
<!DOCTYPE html>
<html lang="en">
<head>
<title>Something Short and Sweet</title>
<meta charset="utf-8" />

</head>
<body>
<p>
Hello World!

</p>
</body>

</html>
codepen.io/cse3901/pen/MWNwqZQ

Computer Science and Engineering  The Ohio State University

Structure of Example

html
lang: en

head body

title meta
charset: utf-8

p

a
href: planet.html

Something Short
and Sweet

Hello

element
attr name:
attr value
text

World

! br img
src: pic.png
alt: a globe

Computer Science and Engineering  The Ohio State University

HTML Entities
 Familiar problem: Encoding
 Is
 a tag or (literal) content?
 Meta-characters (e.g. '<') need to be escaped

 HTML entities represent a literal
&#dddd;

 Where dddd is the “unicode code point” (as a decimal number)
&#xhhhh;

 Where hhhh is the code point in hex
&name;

 Where name is from a small set (lt, gt, amp…)
 Examples:

< < < < <
♥ ♥ ♥

Computer Science and Engineering  The Ohio State University

Kinds of Elements
1. Top-level document structure elements
 The root of tree is <html>
 The root has two children: <head>, <body>

2. Head elements
 (Meta) information about document

3. Body elements, (roughly) two kinds:
1. Block
 Content that stands alone
 Starts new line of text (interrupts the “flow”)
 May contain other elements (block or inline)

2. Inline (aka phrasing)
 Intimately part of surrounding context
 Does not interrupt “flow” of text
 May contain other inline elements

Computer Science and Engineering  The Ohio State University

HTML 5 Content Model

https://www.w3.org/TR/2011/WD-html5-20110525/content-models.html#kinds-of-content

paragraphs,
blocks

text, inline,
intra-paragraph

Computer Science and Engineering  The Ohio State University

Block vs Inline

flow

blocks

inline

body

heading

paragraph

horz rule

Computer Science and Engineering  The Ohio State University

Required Structure for HTML5

html
lang: en

head body

title meta
charset: utf-8

element
attr name:
attr value
text

Computer Science and Engineering  The Ohio State University

Common Head Elements
 <title>: required, must be only text
 May be displayed in window title bar

 <script>: client-side code to run
 <link>: other documents to use
 Commonly used for style information

 <meta>: information about the information (document)
 <meta http-equiv="…" content="…" /> can become a header

field in HTTP response!
<meta http-equiv="Content-Type" content=
<meta http-equiv="Location" content=…
<meta http-equiv="Last-modified" content=…

 <meta name="keywords" content="…" />

Computer Science and Engineering  The Ohio State University

Common Block Elements in Body
 Text
 Paragraph <p>, horizontal rule <hr>
 Headings <h1> <h2> … <h6>
 Preformatted <pre>, quotations <blockquote>

 Lists
 Ordered , unordered , definition <dl>
 Item in list (<dt> <dd> for definitions)

 Table <table>
 Form <form> (and some form elements)
 Sectioning (HTML 5)
 Article <article>, section <section>
 Header <header>, footer <footer>
 Canvas <canvas>

 Generic container for flow content <div>

Computer Science and Engineering  The Ohio State University

Common Inline Elements
 Anchor <a>
 Phrasing and text
 Emphasis , strong emphasis
 Code snippet <code>
 Inline quotation <q>
 Inserted text <ins>, deleted text

 Image
 Form elements
 Generic container within flow content
 Visual markup: deprecated
 Bold , italic <i>, underline <u>
 Typewriter font <tt>
 Font control

Computer Science and Engineering  The Ohio State University

And Don't Forget Comments

 Comments set off by <!-- … -->
 Beware: they do not nest

Computer Science and Engineering  The Ohio State University

Tables

 Row <tr>
 Cell of data <td>
 Header cell (for row or column) <th>
 Caption <caption>
 And some more exotic ones too
 Header (repeat if splitting) <thead>
 Body <tbody>
 Footer (repeat if splitting) <tfoot>

Computer Science and Engineering  The Ohio State University

Table Example
<table>
<caption> Important Dates in CSE 3901 </caption>
<tr> <th scope="col">Quiz</th>

<th scope="col">Day, time</th>
</tr>
<tr> <th scope="row">Midterm 1</th>

<td> Friday, Sept 21, in class</td>
</tr>
<tr> <th scope="row">Midterm 2</th>

<td> Monday, Oct 22, in class</td>

</tr>
<tr> <th scope="row">Final</th>

<td> Wednesday Dec 12,
12:00–1:45 </td>

</tr>
</table>

Computer Science and Engineering  The Ohio State University

Table Example Rendered

Computer Science and Engineering  The Ohio State University

Hyperlinks

 Anchor tag with href attribute
some text

some text
 Clickable element
 Click results in: an HTTP request
 GET request
 URL from value of href attribute

 What about arguments?
 Must be “hard coded” in attribute value
notes

Computer Science and Engineering  The Ohio State University

Forms
 General mechanism for client to make HTTP requests
 GET or POST
<form action="path" method="get">
 HTTP arguments come from nested inputs
<input… name="color">

 User input: <input name="…" type="…"… />
 Text fields <input type="text"…
 Radio buttons <input type="radio"…
 Checkboxes <input type="checkbox"…
 Hidden <input type="hidden"…

 Button <button type="…">
 Default type is submit, which sends the request

 Information (not input): <label>

Computer Science and Engineering  The Ohio State University

Example
<form action="/my-handling-form-page" method="post">

<div>
<label for="name">Mascot:</label>
<input type="text" id="name" name="mascot_name" />

</div>
<div>

<label for="mail">E-mail:</label>
<input type="email" id="mail" name="mascot_mail" />

</div>
<div>

<label for="msg">Message:</label>
<textarea id="msg" name="message"></textarea>

</div>

<div class="button">
<button>Send your message</button>

</div>
</form>

codepen.io/cse3901/pen/VwxQPyy

Computer Science and Engineering  The Ohio State University

Form Rendered

Computer Science and Engineering  The Ohio State University

Form Modified by User

Computer Science and Engineering  The Ohio State University

Form Submitted
 When button (with type submit) is clicked
 HTTP request is sent, with
 Verb per form's method
 URL per form's action
 Arguments per form's inputs

 Input's name attribute is the argument name
 Value (usually user controllable) is the argument value

 Example:
POST /my-handling-form-page HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 68

mascot_name=Brutus&mascot_mail=buckeye%40osu.edu
&message=hello+world

Computer Science and Engineering  The Ohio State University

Summary

 Evolution of HTML: HTML 5
 Tension between permissive and strict
 Page validation

 An HTML document is a tree
 Elements are nodes, text is leaves
 Elements have attributes

 Head elements: meta information
 Body elements: content
 Block elts: para, heading, list, table, div
 Inline elts: anchor, img, emphasis, span

 Forms: user-controlled HTTP params

