
Computer Science and Engineering  College of Engineering  The Ohio State University

CSS:
Conflict Resolution

Lecture 18

Computer Science and Engineering  The Ohio State University

Recall: Example

body

h1

a img

p
.draft

p

h2

h2

em

q
.draft

span
.university

.warning p.draft em
h2 span.university
.warning h2 .university
div .university

div
.warning

em
Ohio State
University

The

span
.university

University
of Michigan

Computer Science and Engineering  The Ohio State University

Resolving Conflicts
 Generally, (text) styles are inherited
 Inherited styles are overridden by any selectors that

match children
 But conflicts can arise: multiple selectors match the

same element
 Multiple rules with same selector

h1 { … }
h1 { … }

 One element in two different classes
<p class="draft warning">

 Selectors with different paths match
.warning img
.draft img

 Different sources of css (document author, user agent)

Computer Science and Engineering  The Ohio State University

Priority of Styling

 Rough sketch:
 Place conflicting rules into categories
 Within category, most specific rule wins
 Break remaining ties with order of declaration

 More detail: There are 3 stages, made from 4
factors:
1. Location and Importance
2. Specificity
3. Declaration order

Computer Science and Engineering  The Ohio State University

Location (1)

 Three sources of CSS rules:
 Author of document
 Direct style attribute on element (ugly)
 <style> in head element
 <link> to CSS style sheets in header

 User (rare)
 Browser, aka user agent (defaults, eg blue underline)

 Priority order (high to low):
1. Author (direct, head style, linked)
2. User
3. Browser

Computer Science and Engineering  The Ohio State University

Importance (1)
 Preference given to document author
 But some users really need control
 Solution: !important modifier on style

h1 { font-family: arial !important; }

 Priority order of categories (high to low):
1. Browser !important
2. User !important
3. Author !important
4. Author (normal)
5. User (normal)
6. Browser (normal)

 Use sparingly and with caution (eg for debugging)

Computer Science and Engineering  The Ohio State University

Specificity (2)

 Within a given category, most specific rule has
highest priority

 Specificity of selector: a triple (x, y, z)
 x = no. of id's
 y = no. of classes (and pseudo-classes)
 z = no. of elements (and pseudo-elts)

 Specificity triples are compared lexicographically
 Larger triple is more specific = higher priority

(2, 0, 0) > (1, 4, 3)
(1, 2, 0) > (1, 1, 5)

Computer Science and Engineering  The Ohio State University

Source Order (3)

 Any remaining ties are broken by the order in which
rules are encountered

 Later rule wins, ie later rule overrides previous one
 Example (order matters)

h1, h2 { padding: 25px; }
h2 { padding-left: 10px; }

 Example (order matters)
p {

padding: 25px;
padding-left: 80px;

}

Computer Science and Engineering  The Ohio State University

Your Turn: Priority Calculation

 Which rule has higher priority?
#main li { }
.draft ul li { }

 Order the following from high to low:
.draft div .warning li { }
.draft div #main li { !important; }
.draft div #main ul li { }
.draft .warning ul li { }

Computer Science and Engineering  The Ohio State University

Problem: Any Selector Beats Inheritance

body

h1

a img

p
.draft

p

h2

h2

em

q
.draft

span
.university

div
.warning

em
Ohio State
University

The

span
.university

University
of Michigan

.warning p.draft
a

Computer Science and Engineering  The Ohio State University

Explicit Inheritance
 Problem: How can we style <a>?
 Children inherit color from parent (usually a good thing)
 But browser defines default color for <a>

a { color: blue;
text-decoration: underline; }

 Author styling wins against a browser rule
a { color: black; }

 But what if we want the color of <a> to be the same as its
parent?
.warning { color: darkred; }
.warning a { color: darkred; }

 Solution: explicit inheritance
a { color: inherit; }

Computer Science and Engineering  The Ohio State University

Pseudo-classes

 Virtual classes
 Implicit declaration (several standard ones exist)
 Implicit membership (no need to set class in HTML)

 CSS syntax: elt:pseudo
 Same specificity score as (non-pseudo) class

ul li:nth-child(2n) {…}

li lilili

ul

li

Computer Science and Engineering  The Ohio State University

Examples: Pseudo-classes

a.button:hover {
background: green;

}

tbody tr:nth-of-type(odd) {
background: #ccc;

}

Computer Science and Engineering  The Ohio State University

Some Useful Pseudo-classes
 Classic

 :link, :visited, :active
 :hover, :focus

 Structural
 :nth-child(An+B | even | odd), :nth-of-type(An+B | even | odd)
 :first-child, :last-child, :first-of-type
 :only-child, :only-of-type
 :empty, :root

 State of UI elements
 :enabled, :disabled
 :checked

 Target
 :target /* elt whose id matches url fragment */

 Negation
 :not(S)

Computer Science and Engineering  The Ohio State University

Pseudo-elements

 Virtual elements
 Implicitly exist
 Not part of structural tree (just rendering)

 CSS syntax: elt::pseudo
.summary th::after { content: "!";}

th th

.summary

th

!! !

Computer Science and Engineering  The Ohio State University

Some Useful Pseudo-Elements

 Match start
 ::first-line, ::last-line
 ::first-letter

p::first-letter { font-size: 300% }

 Insert content
 ::before, ::after

 Inserted as (first/last) child of element
 Requires CSS content property to be set
 Beware using CSS to inject content!

Computer Science and Engineering  The Ohio State University

Summary: CSS Conflict Resolution

 Classes and Ids
 Divs and Spans
 Selectors with ancestors, siblings
 Conflict resolution in CSS
 Pseudo-classes and pseudo-elements

