
Computer Science and Engineering  College of Engineering  The Ohio State University

Static Site Generation

Lecture 21

Computer Science and Engineering  The Ohio State University

What is Static Site Generation?
 Using a program to produce HTML pages
 Analogous to compiling programs
 Translation maps source code  machine code
 SSG maps source code  html, css, and other assets for site

 Development cycle:
 Write source
 Compile (aka build)
 Test/inspect result

 Examples of translators
 Jekyll (used for GitHub Pages, see github.io)
 Middleman
 Lots more, see: staticsitegenerators.net

Computer Science and Engineering  The Ohio State University

The Build Process

.html

.
.css

.md

.scss

.erb

generated
web site

source
files

build

Computer Science and Engineering  The Ohio State University

Middleman: A Ruby Gem
 Project is a directory (eg mysite)

mysite$ middleman init
 Creates configuration files, README, Gemfile, etc

 Develop: Create/edit files in source/
 Organize CSS, images, etc into subdirectories of source

 Preview locally (no build needed)
mysite$ bundle exec middleman server

 Build the site (from the source)
mysite$ bundle exec middleman build
 Result is placed in myproj/build

 Deploy: copy/rsync/ftp contents to server
mysite$ rsync -avz --del myproj/build ~/WWW

Computer Science and Engineering  The Ohio State University

Deployment Option: GitHub
 GitHub Pages: serves repo as web site
 URL https://org.github.io/repo/
 Settings > Pages > Build > Source > Deploy from a branch
 Select branch name, eg gh-pages, and optionally a folder

 Alternative: GitHub Action (aka a CI/CD pipeline)
 Defined by YAML file in .github/workflows/
 Responds to an event (eg push on main)
 General purpose: Runs a build process, deploys the result

 Advice: Use relative links (notice path in URL)
config.rb
activate :relative_assets
set :relative_links, true

 Helpful: add URL to repo's About section

Computer Science and Engineering  The Ohio State University

Why Bother?

1. Code reuse and single-point-of-control over change
2. Authoring of content in a language that is more

human-friendly
3. Parameterized generation of markup and content

Let's look at each of these benefits in turn…

Computer Science and Engineering  The Ohio State University

Why Bother?

1. Code reuse and single-point-of-control over change
2. Authoring of content in a language that is more

human-friendly
3. Parameterized generation of markup and content

Let's look at each of these benefits in turn…

Computer Science and Engineering  The Ohio State University

Motivation #1: Visual Identity (Example)

Computer Science and Engineering  The Ohio State University

Motivation #1: Visual Identity

 For a unified look, use same headers & footers
 Example: OSU web sites share nav bar
 Example: course web site shares navigation and footer

 But duplication of code is evil
 Corollary: cut-and-paste is evil
 Destroys single-point-of-control over change

 Solution:
 Put the shared HTML in one file (a partial)
 Include this file in each page
 But HTML does not have such an include mechanism…

Computer Science and Engineering  The Ohio State University

ERb: Embedded Ruby
 General mechanism for templating

 “Template” = a string (file) used to produce a final string (file)
 Contains (escaped) bits of ruby

 <% ruby code %> a scriplet: executes (ruby) code
 <%= ruby expr %> an expression: replaced with its value
 <%# text %> a comment: ignored

 Example
<%# example.txt.erb %>
This is some text.
<% 5.times do %>
Current Time is <%= Time.now %>!
<% end %>

 Command line tool erb processes the template, produces result
$ erb example.txt.erb > example.txt

 Naming convention: filename.outputlang.erb
 Example index.html.erb

 Many alternative templating languages exist, eg HAML

Computer Science and Engineering  The Ohio State University

Generation of Site

 Source files in source/ subdirectory
$ ls source
index.html.erb syll.html.erb
meet.html.erb

 Compile
$ bundle exec middleman build

 Result after building
$ ls build
index.html meet.html syll.html

Computer Science and Engineering  The Ohio State University

Partials
 A document fragment included in other documents
 Include in a template using the partial function

<body>
<%= partial "navigation" %>
…
<%= partial "footer" %>

</body>
 Partial's filename begins with '_'
 ie _navigation.erb
<div class="navbar">
<ul id="site-nav"> …

</div>
 Note: '_' is omitted in the function argument!

Computer Science and Engineering  The Ohio State University

Generation of Site with Partials

 Source files in source/ subdirectory
$ ls source
_footer.erb meet.html.erb
_navigation.erb syll.html.erb
index.html.erb

 Compile
$ bundle exec middleman build

 Result after building
$ ls build
index.html meet.html syll.html

Computer Science and Engineering  The Ohio State University

Site Generation With Partials

A

B

C

A

B

C

index.html

syll.html

meet.html

index.html.erb

meet.html.erb

syll.html.erb

_navigation.erb

_footer.erb

Computer Science and Engineering  The Ohio State University

Tricks with Partials

 Content of a partial can be customized by passing
arguments to the call

 In call to partial, pass a hash called :locals
<%= partial "banner",

locals: { name: "Syllabus",
amount: 34 } %>

 In the partial, access this hash using variables
<%# _banner.erb %>
<h3> <%= name %> </h3>
<p> Costs <%= "$#{amount}.00" %></p>

Computer Science and Engineering  The Ohio State University

Problem
 How do we guarantee that every page includes partial(s)?

 Partials don't ensure the same page structure across the site
 Every page should look like:

<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8">
<title>Class Meetings</title>
<link rel="stylesheet" type="text/css" href="osu_style.css">

</head>
<body>

<%= partial "navigation" %>
… <!-- different for each page -->
<%= partial "footer" %>

</body>
</html>

Computer Science and Engineering  The Ohio State University

Solution: Layouts
 HTML formed from: Layout + Template

 Layout is the common structure of HTML pages
 Layout uses yield to include (page-specific) template

 File: layout.erb
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title> … etc

</head>
<body>
<%= partial "navigation" %>
<%= yield %>
<%= partial "footer" %>

</body>
<html>

 Layout is where you put site-wide styling
 e.g., navigation bar, div's with CSS classes, footers

Computer Science and Engineering  The Ohio State University

Site Generation With Layouts

A

B

C

index.html

syll.html

meet.html

index.html.erb

meet.html.erb

syll.html.erb

_navigation.erb

_footer.erb

layout.erb

A

B

C

Computer Science and Engineering  The Ohio State University

Generation of Site with Layouts

 Default layout in source/layouts/layout.erb
$ ls –F source
index.html.erb meet.html.erb layouts/ syll.html.erb
$ ls source/layouts
_footer.erb _navigation.erb layout.erb

 Result after building
$ ls build
index.html meet.html syll.html

Computer Science and Engineering  The Ohio State University

Page-Specific Data in Layout
 Some layout content is page-specific
 Example: <title> in document's head

 Solution: Ruby variable current_page
 Example: current_page.path

 Template can use “frontmatter” to set the value of
current_page.data
 In template (meet.html.erb)

title: "Class Meetings"

 In layout (layout.erb)
<title> <%= current_page.data.title %> </title>

Computer Science and Engineering  The Ohio State University

Example: Navbar Highlights

Computer Science and Engineering  The Ohio State University

Why Bother? (2)

1. Code reuse and single-point-of-control over change
2. Authoring of content in a language that is more

human-friendly
3. Parameterized generation of markup and content

Let's look at each of these benefits in turn…

Computer Science and Engineering  The Ohio State University

Motivation #2: Improved Syntax

 HTML tags make content hard to read
 <p>, <h2>, , etc
 vs plain text, which is easier to read

 Common plain text conventions:
 Blank lines between paragraphs
 Underline titles with –'s or ='s
 Emphasize *words*, _words_, **words**
 Links as [text](url)
 Unordered lists with bullets using * or -
 Numbered lists with 1., 2., 3.

<h2>Why Middleman?</h2>

<p>The last few years have seen an explosion in the amount and
variety of tools developers can use to build web applications.
Ruby on Rails selects a handful of these tools:</p>

Sass for DRY
stylesheets
CoffeeScript for safer
and less verbose javascript
Multiple asset management solutions, including Sprockets
<a href="http://ruby-doc.org/stdlib-
2.0.0/libdoc/erb/rdoc/ERB.html">ERb & Haml for dynamic pages and
simplified HTML syntax

<p>Middleman gives the stand-alone developer…

Why Middleman?

The last few years have seen an explosion in the amount and
variety of tools developers can use to build web applications.
Ruby on Rails selects a handful of these tools:

* [Sass](http://sass-lang.com/) for DRY stylesheets
* [CoffeeScript](http://coffeescript.org/) for safer and less
verbose javascript
* Multiple asset management solutions, including
[Sprockets](https://github.com/sstephenson/sprockets)
* [ERb](http://ruby-doc.org/stdlib-
2.0.0/libdoc/erb/rdoc/ERB.html) & [Haml](http://haml.info/) for
dynamic pages and simplified HTML syntax

Middleman gives the stand-alone developer…

Computer Science and Engineering  The Ohio State University

Markdown
 Formalizes these ASCII conventions
 Filename extension: .md
 Adds some less familiar ones (eg `)

 Translator generates HTML from markdown
 Examples: GitHub readme's, user-posted comments on web boards

(StackOverflow)
 Other target languages possible too

 See Middleman's README.md
 Regular view
 Raw view

 Warning: there are many Markdown dialects (and extensions)
 Original: daringfireball.net (Gruber, 2004), stale
 Now: CommonMark, GFM, MultiMarkdown, Pandoc, Markdown Extra
 Choice of parser matters too! kramdown, rdiscount, redcarpet, …

Computer Science and Engineering  The Ohio State University

CSS: Magic Numbers

 Literals are common in CSS
h1 { background-color: #ff14a6; }
h2 { color: #ff14a6; }

 Result: Lack of single-point-of-control
 Solution: SASS allows variables

$primary: #ff14a6;
h1 { background-color: $primary; }
h2 { color: $primary; }

 Translator generates CSS from SASS source
 Note: CSS custom properties can be used instead

Computer Science and Engineering  The Ohio State University

CSS: Repeated Ancestry in Rules
 CSS requires separate selectors, even when paths overlap

.navbar ul { … }

.navbar ul li { … }

.navbar a { … }

 Problems:
 Changing the classname requires changing all of these selectors
 Related rules are not structurally connected (rule list is flat)

 Solution: SASS allows nested selectors
.navbar {

ul { …
li { … } }

a { … }
}

Computer Science and Engineering  The Ohio State University

Why Bother? (3)

1. Code reuse and single-point-of-control over change
2. Authoring of content in a language that is more

human-friendly
3. Parameterized generation of markup and content

Let's look at each of these benefits in turn…

Computer Science and Engineering  The Ohio State University

Motiv'n #3: Content Generation

 Problem: Repeated content
 Example: Course offering term
 Used in several templates, multiple places in a template
 Lack of single point of control over change

 Solution: Define content in a separate data file
 Put data file(s) in data/ subdirectory
 Define variables using YAML

data/dates.yml
term: "Autumn 2025"

 Variables are available for use in templates
index.html.erb
Semester: <%= data.dates.term %>

Computer Science and Engineering  The Ohio State University

Generating Repeated Structures

 Problem: Repeated structure
 Example: Each row in table should look the same (content

of each column, number of columns, …)
 Solution: Generate row structure with code
 Define content in an iterable (eg an array)
data/meetings.yml
- topic: "Architecture"

type: "lecture"
- topic: "Git"

type: "lab"
- topic: "Ruby: Basics"

type: "lecture"

Computer Science and Engineering  The Ohio State University

Generating Repeated Structures (Cont'd)

 Solution: continued…
 Iterate over array, creating a table row from each entry
<% data.meetings.each do |meet| %>
<tr>

<td> <%= meet.topic %> </td>
<td> <%= meet.type %> </td>…

</tr>
<% end %>

Computer Science and Engineering  The Ohio State University

Generating Random Content

 Want placeholder content for a quick prototype
 Example: Useful for making style/layout decisions
 Don't care about the actual text, images, headers, etc

 Solution: use a method that returns an HTML string
<%= lorem.sentence %>

 Other lorem methods
lorem.paragraphs 2
lorem.date
lorem.last_name
lorem.image('300x400') #=> http://placehold.co/300x400

Computer Science and Engineering  The Ohio State University

Helper Functions

 Used to generate common HTML snippets
 Example: hyperlinks

About us

 Generate HTML using link_to helper in template:
<%= link_to('About us', '/about.html') %>
#=> About us

 Many optional arguments
<%= link_to('My Blog', '/blog.html',

class: 'news') %>
#=> My Blog

Computer Science and Engineering  The Ohio State University

(Many) More Helper Functions
 Format helpers

pluralize 2, 'person' #=> 2 people

 Tag helpers
tag :img, src: '/kittens/png' #=>
content_tag :p, class: 'warn' do … end #=> <p class=…>…</p>

 Form helpers
form_tag '/login', method: 'post' #=> <form action="…">…
button_tag 'cancel', class: 'clear' #=> <button name="…">…

 Asset helpers
stylesheet_link_tag 'all' #=> <link rel="stylesheet"…
javascript_include_tag 'jquery' #=> <script src="jquery">…
favicon_tag 'images/favicon.png'#=> <link rel="icon"… />
image_tag 'padrino.png', width: '35', class: 'logo'

Computer Science and Engineering  The Ohio State University

Summary

 ERb
 Template for generating HTML
 Scriplets and expressions

 Reuse of views with partials
 Included with partial (eg <%= partial…)
 Filename is prepended with underscore
 Parameter passing from parent template

 Layouts and templates
 Markdown, SASS
 Content generation and helpers

