
Computer Science and Engineering  College of Engineering  The Ohio State University

JavaScript:
Objects, Methods, Prototypes

Lecture 25

Computer Science and Engineering  The Ohio State University

What is an Object?
 Property: a key/value (aka name/value) pair
 Object: a partial map of properties
 Keys must be unique

 Creating an object with literal notation
let myCar = { make: "Acura",

year: 1996,
plate: "NKR463" };

 To access/modify an object's properties:
myCar.make = "Ford"; // cf. Ruby
myCar["year"] = 2006;
let str = "ate";
myCar["pl" + str] == "NKR463"; //=> true

Computer Science and Engineering  The Ohio State University

Object Properties

"Ford"

2006

"NKR463"

make

year

plate

myCar

Computer Science and Engineering  The Ohio State University

Arrays vs Associative Arrays

4

"hi"

3.14 true

true

false

0

1

2

0

1

2

3

4

"hi"

3.14 true

true

false

0

1

2

age

greeting

doors

pi

Computer Science and Engineering  The Ohio State University

Dynamic Size, Just Like Arrays

 Objects can grow
myCar.state = "OH"; // myCar now has 4 properties
let myBus = {};
myBus.driver = true; // adds a property to MyBus
myBus.windows = [2, 2, 2, 2];

 Objects can shrink
delete myCar.plate; // removes property from m

// { make: "Ford", year: 2006, state: "OH" }

Computer Science and Engineering  The Ohio State University

Object Properties (2)

"Ford"

2006

"NKR463"

make

year

plate

myCar

Computer Science and Engineering  The Ohio State University

Object Properties (3)

"Ford"

2006

"NKR463"

"OH"

make

year

plate

state

myCar myCar.state = "OH";

Computer Science and Engineering  The Ohio State University

Object Properties (4)

"Ford"

2006

"OH"

make

year

state

myCar delete myCar.plate;

Computer Science and Engineering  The Ohio State University

Testing for the Presence of a Key

 Boolean operator: in
propertyName in object

 Evaluates to true iff object has the indicated property
key

"make" in myCar //=> true
"speedometer" in myCar //=> false
"OH" in myCar //=> false

 Property names are strings

Computer Science and Engineering  The Ohio State University

Iterating Over Properties
 Iterate over keys with for…in syntax

for (let property in object) {
…object[property]…

}

 Notice [] to access each property
for (let p in myCar) {
console.info(`${p}: ${myCar[p]}`);

}

 Loop over an iterable (eg array) with for…of
for (let elt of roster) {
console.info(`name: ${elt}`);

}

Computer Science and Engineering  The Ohio State University

Destructuring Assignment
 Objects can have many properties, and many levels of

nesting
const result = someGiantObject(); //=> {… car:…, bus:…, …}

// but we only care about the car and bus properties
report(result.car);
combine(result.car, result.bus);

 Alternative: destructuring assignment
let {car, bus} = someGiantObject();
report(car);
combine(car, bus);
let {car: c, bus: b} = someGiantObject();
combine(c, b);
 Eliminates unneeded variable result
 Simplifies access to properties of interest

Computer Science and Engineering  The Ohio State University

Methods
 The value of a property can be:
 A primitive (boolean, number, string, null…)
 A reference (object, array, function)

let temp = function(sound) {
play(sound);
return 0;

}
myCar.honk = temp;

 More succinctly:
myCar.honk = function(sound) {
play(sound);
return 0;

}

Computer Science and Engineering  The Ohio State University

Example: Method

let myCar = {
make: "Acura",
year: 1996,
plate: "NKR462",
honk: function(sound) {

play(sound);
return 0;

}
};

Computer Science and Engineering  The Ohio State University

Example: Method (with Sugar)

let myCar = {
make: "Acura",
year: 1996,
plate: "NKR462",
honk(sound) {

play(sound);
return 0;

}
};

Computer Science and Engineering  The Ohio State University

Object Properties (5)

"Acura"

1996

"NKR462"

make

year

plate

honk
play(sound);
return 0;

myCar

Computer Science and Engineering  The Ohio State University

Keyword “this” in Functions
 Recall distinguished formal parameter

x.f(y, z); // x is the distinguished argument (aka receiver)
 Inside a function, may use keyword “this”

function report() {
return this.plate + this.year;

}
 At run-time, “this” is the distinguished argument of the invocation

myCar = { plate: "NKR462", year: 1996 };
yourCar = { plate: 340, year: 2013 };
myCar.register = report;
yourCar.info = report;
myCar.register(); //=> "NKR4621996"
yourCar.info(); //=> 2353

 Note: arrow functions work differently!
 They do not have their own this, use enclosing lexical scope

Computer Science and Engineering  The Ohio State University

Object Properties (6)

"NKR462"

1996

plate

year

register

return this.plate
+ this.year;

myCar

report

340

2013

plate

year

info

yourCar

Computer Science and Engineering  The Ohio State University

Constructors
 Any function can be a constructor
 When calling a function with “new”:

1. Make a brand new (empty) object
2. Call the function, with the new object as the distinguished argument
3. Implicitly return the new object to caller

 A “constructor” often adds properties to the new object
simply by assigning them

function Dog(name) {
this.name = name; // adds 1 property

// no explicit return needed
}
let furBall = new Dog("Rex");

 Naming convention: Functions intended to be constructors
are capitalized

Computer Science and Engineering  The Ohio State University

Example: Function
function Circle(x, y, radius) {

this.centerX = x;
this.centerY = y;
this.radius = radius;
this.area = function() {
return Math.PI * this.radius *

this.radius;
}

}
let c = new Circle(10, 12, 2.45);

Computer Science and Engineering  The Ohio State University

Creating a Circle Object

let c = new Circle(10, 12, 2.45);

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering  The Ohio State University

Creating a Circle Object (2)

let c = new Circle(10, 12, 2.45);

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering  The Ohio State University

Creating a Circle Object (3)

10

12

2.45

centerX

centerY

radius

return Math.PI *
this.radius *
this.radius

area

let c = new Circle(10, 12, 2.45);

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering  The Ohio State University

Creating a Circle Object (4)

10

12

2.45

centerX

centerY

radius

return Math.PI *
this.radius *
this.radius

c

area

let c = new Circle(10, 12, 2.45);

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering  The Ohio State University

Creating a Circle Object (5)

10

12

2.45

centerX

centerY

radius

return Math.PI *
this.radius *
this.radius

c

area

let c = new Circle(10, 12, 2.45);

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering  The Ohio State University

Creating Many Circle Objects (6)

10

12

2.45

centerX

centerY

radius

return Math.PI *
this.radius *
this.radius

area

for (let i = 0; i < 1000; i++) {
new Circle(0, 0, i);

}

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

How many of these?

Computer Science and Engineering  The Ohio State University

Prototypes

 Every object has a prototype
 A hidden, indirect property ([[Prototype]])

 What is a prototype?
 Just another object! Like any other!

 When accessing a property p (i.e. obj.p):
 First look for p in obj
 If not found, look for p in obj's prototype
 If not found, look for p in that object's prototype!
 And so on, until reaching the basic system object

Computer Science and Engineering  The Ohio State University

Prototype Chaining

4
"hi"

3.14

true

true

false

0

1

2

age
greeting

doors

pi

toString

hasOwnProperty

push

pop

etc…

Computer Science and Engineering  The Ohio State University

Class-Based Inheritance

static static static

interfaces

classes

objects

extends

extends

implements

instantiates

Computer Science and Engineering  The Ohio State University

Prototype: Get vs Set of Property (Setup)

 Consider two objects
let dog = { name: "Rex", age: 3 };
let pet = { color: "blue" };

 Assume pet is dog's prototype

Computer Science and Engineering  The Ohio State University

Delegation to Prototype

"blue""Rex"

3

colorname

age

dog pet

Computer Science and Engineering  The Ohio State University

Prototype: Get vs Set of Property

 Consider two objects
let dog = { name: "Rex", age: 3 };
let pet = { color: "blue" };

 Assume pet is dog's prototype
// dog.name == ?
// dog.color == ?
pet.color = "brown";
// dog.color is ?
dog.color = "green";
// dog.color is ?
// pet.color is ?

Computer Science and Engineering  The Ohio State University

Prototype: Get vs Set of Property (Solution)

 Consider two objects
let dog = { name: "Rex", age: 3 };
let pet = { color: "blue" };

 Assume pet is dog's prototype
// dog.name == "Rex"
// dog.color == "blue" (follow chain)
pet.color = "brown"; // set in proto
// dog.color is "brown" (prop changed)
dog.color = "green"; // set in object
// dog.color is "green"
// pet.color is still "brown" (hiding)

Computer Science and Engineering  The Ohio State University

Delegation to Prototype (2)

"blue""Rex"

3

colorname

age

dog pet

dog.color == ?
// get follows prototype chain

Computer Science and Engineering  The Ohio State University

Delegation to Prototype (3)

"brown""Rex"

3

colorname

age

dog pet

dog.color == ?
// get follows prototype chain

pet.color = "brown";
// set changes object

Computer Science and Engineering  The Ohio State University

Delegation to Prototype (4)

"brown""Rex"

3

colorname

age

"green"color

dog pet dog.color = "green";
// set changes object!

dog.color == ?
// get follows prototype chain

Computer Science and Engineering  The Ohio State University

Prototypes Are Dynamic Too

 Prototypes can add/remove properties
 Changes are felt by all children

// dog is { name: "Rex", age: 3 }
// dog.mood & pet.mood are undefined
pet.mood = "happy"; // add to pet
// dog.mood is now "happy" too
pet.bark = function() {

return `${this.name} is ${this.mood}`;
}
dog.bark(); //=> "Rex is happy"
pet.bark(); //=> "undefined is happy"

Computer Science and Engineering  The Ohio State University

Delegation to Prototype (5)

"brown""Rex"

3

colorname

age

dog pet

"happy"mood

bark
return
`${this.name} is
${this.mood}`;

dog.bark();
pet.bark();

Computer Science and Engineering  The Ohio State University

Connecting Objects & Prototypes

 How does an object get a prototype?
let c = new Circle();

 Answer
1. Every function has a prototype property
 Do not confuse with hidden [[Prototype]]!

2. Object's prototype link—[[Prototype]]—is set to the
function's prototype property

 When a function Foo is used as a constructor, i.e.
new Foo(), the value of Foo's prototype property is
the prototype object of the created object

Computer Science and Engineering  The Ohio State University

Prototypes And Constructors

area

constructor

prototype

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering  The Ohio State University

Prototypes And Constructors (2)

area

constructor

prototype

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

c = new Circle()

Computer Science and Engineering  The Ohio State University

Prototypes And Constructors (3)

area

constructor

prototype

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

c = new Circle()

Computer Science and Engineering  The Ohio State University

Prototypes And Constructors (4)

10

12

2.45

centerX

centerY

radius

area

constructor

prototype

this.centerX = x;
this.centerY = y;
... Etc ...

c

Circle

c = new Circle()

Computer Science and Engineering  The Ohio State University

Idiom: Put Methods in Prototype
function Dog(n, a) {
this.name = n;
this.age = a;

this.bark = function(sound) {
return `${this.name} says ${sound}`;

}
};

// bad: method is added to object itself

Computer Science and Engineering  The Ohio State University

Method is in Object

"Rex"

6

name

age

prototype

this.name = x;
this.age = a;
this.bark = …

Dog

return this.name
+ "says" + sound;

prototype

r = new Dog()

bark

Dog.prototype

Computer Science and Engineering  The Ohio State University

Idiom: Methods in Prototype
function Dog(n, a) {

this.name = n;
this.age = a;

};

Dog.prototype.bark = function(sound) {
return `${this.name} says ${sound}`;

};

// good: add method to prototype

Computer Science and Engineering  The Ohio State University

Idiom: Methods in Prototype (ES6)
class Dog {
constructor(n, a) {

this.name = n;
this.age = a;

}

bark(sound) {
return `${this.name} says ${sound}`;

}
}

// best: ES6 class syntax

Computer Science and Engineering  The Ohio State University

Methods in Prototype

"Rex"

6

name

age

bark

constructor

prototype

this.name = n;
this.age = a;

Dog

r = new Dog() Dog.prototype

return
`${this.name}
says ${sound}`;

prototype

Computer Science and Engineering  The Ohio State University

Class With Instance Fields
class Dog {
name = "Fur"; // property of object
age; // will be initialized by constructor

constructor(n, a) {
this.name = n;
this.age = a;

}

bark(sound) {
return `${this.name} says ${sound}`;

}
}

Computer Science and Engineering  The Ohio State University

Meaning of r instanceof Dog

"Rex"

6

name

age

bark

prototype

this.name = n;
this.age = a;

Dog

r = new Dog() Dog.prototype

constructor

r.__proto__.constructor
== Dog

return
`${this.name}
says ${sound}`;

prototype

Computer Science and Engineering  The Ohio State University

Idiom: Classical Inheritance
function Animal() { ... };
function Dog() { ... };

Dog.prototype = new Animal();
// create prototype for future dogs

Dog.prototype.constructor = Dog;
// set prototype's constructor
// properly (ie should point to Dog())

Computer Science and Engineering  The Ohio State University

Setting up Prototype Chains

constructor

prototype

Animal

constructor

prototype

Dog

new Animal() // Dog.prototype

"Rex"name

r = new Dog()

Animal.prototype

Computer Science and Engineering  The Ohio State University

Prototype Chains

 instanceOf is checked transitively up the prototype
chain
r instanceOf Dog //=> true
r instanceOf Animal //=> true
r instanceOf Object //=> true

 Q: Identify the following in the previous diagram
r.__proto__.__proto__.constructor
Dog.prototype.__proto__.constructor.prototype

Computer Science and Engineering  The Ohio State University

Simple But Complicated

