JavaScript:

Objects, Methods, Prototypes

Lecture 25

What is an Object?

Computer Science and Engineering B The Ohio State University

Property: a key/value (aka name/value) pair
Object: a partial map of properties
B Keys must be unique

Creating an object with literal notation

let myCar = { make: "Acura',
year: 1996,
plate: '"NKR463" };

[0 access/modify an object's properties:

myCar .make = "Ford"; // cf. Ruby
myCar|["year"] = 2006;
let str = "ate";

myCar["pl" + str] == "NKR463"; //=> true

Object Properties

Computer Science and Engineering B The Ohio State University

e [
S

: 4 N\ :
| make | "Ford" !
o il
| year| 2006 !
I > <1
| |
| plate | "NKR463" | |
I I
| |
| |
' |

Arrays vs Associative Arrays

rsity

Computer Science and Engineering B The Ohio State Unive

[e————————————

r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L

Dynamic Size, Just Like Arrays

O Objects can grow
myCar.state

"OH"; // myCar now has 4 properties
let myBus = {};

myBus.driver = true; // adds a property to MyBus
myBus .windows = [2, 2, 2, 2];

O Objects can shrink

delete myCar.plate; // removes property from m
// { make: "Ford'", year: 2006, state: "OH" }

Object Properties (2)

Computer Science and Engineering B The Ohio State University

e [
S

4)
make | "Ford"

\ 4

4)

year 2006

Y
AN

plate | "NKR463"

Object Properties (3)

Computer Science and Engineering B The Ohio State University

myCar [k} myCar.state = "OH";
make | "Ford"
year 2006

plate | "NKR463"

state "OH"

Object Properties (4)

Computer Science and Engineering B The Ohio State University

myCar [k} delete myCar.plate;
r:tjj:;>L______?1
I I
| make | "Ford" !
N ¥
I year 2006 :
I)
! state "OH" !
| " 2 |
I I
I I
I I
' :

Testing for the Presence of a Key

The Ohio State University

0 Boolean operator: in
propertyName in object

O Evaluates to true iff object has the indicated property
key
"make" in myCar //=> true
"speedometer" in myCar //=> false
"OH" in myCar //=> false

B Property names are strings

Iterating Over Properties

Iterate over keys with for...in syntax

for (let property in object) ({
..object|[property]..

}

Notice [] to access each property

for (let p in myCar) {
console.info(${p}: ${myCar[pl})

}

Loop over an iterable (eg array) with for...of

for (let elt of roster) {
console.info (name: ${elt}’);

}

Computer Science and Engineering B The Ohio State Universi

Destructuring Assignment

Computer Science and Engineering B The Ohio State University

Objects can have many properties, and many levels of
nesting

const result = someGiantObiject(); //=> {.. car:.., bus:., ..}
// but we only care about the car and bus properties

report (result.car) ;

combine (result.car, result.bus);

Alternative: destructuring assignment
let {car, bus} = someGiantObject()
report (car) ;

combine (car, bus);

let {car: c, bus: b} = someGiantObject();
combine(c, b);

B Eliminates unneeded variable result

B Simplifies access to properties of interest

Methods

Computer Science and Engineering B The Ohio State University

'he value of a property can be:
B A primitive (boolean, number, string, null...)

B A reference (object, array, function)
let temp = function (sound) {

play (sound) ;
return 0O;

}

myCar. = temp;
More succinctly:
myCar. = function (sound) {

play (sound) ;
return O;

Example: Method

let myCar = {
make: "Acura',
year: 1996,
plate: "NKR462",
honk: function(sound) {
play (sound) ;

return 0O;

Example: Method (with Sugar)

Computer

let myCar = {
make: "Acura',
year: 1996,
plate: "NKR462",
honk (sound) {
play (sound) ;

return 0O;

neering B The Ohio State Universi

Object Properties (5)

Computer Science and Engineering B The Ohio State University

e [
S

4)

year 1996

plate | "NKR462"

play (sound) ;
‘):: return 0; "

Y4
AN

Keyword “this” in Functions

Computer Science and Engineering B The Ohio State University

O Recall distinguished formal parameter
x.£(y, z); // x is the distinguished argument (aka receiver)

O Inside a function, may use keyword “this”
function () {
return this.plate + this.year;

}
O At run-time, “this” is the distinguished argument of the invocation
myCar = { plate: '"NKR462", year: 1996 };
yourCar = { plate: 340, year: 2013 };
myCar .register = ;
yourCar.info = ;
myCar.register () ; //=> "NKR4621996"
yourCar.info () ; //=> 2353

O Note: arrow functions work differently!
B They do not have their own this, use enclosing lexical scope

Object Properties (6)

Computer Science and Engineering B The Ohio State University

myCar[+ } yourCar[A }

r i J—— I
I s N : 4 A :
| plate | "NKR462" | ! | plate | 340 i
I \\§ J I I > < I
I 0 N1

: year 1996 ! i year| 2013 i
: | > < : : > < :
| register A\ : , !
: N y, : : :

Constructors

Computer Science and Engineering B The Ohio State University

Any function can be a constructor

When calling a function with “new”:

1. Make a brand new (empty) object
2. Call the function, with the new object as the distinguished argument

3. Implicitly return the new object to caller
A “constructor” often adds properties to the new object
simply by assigning them

function Dog(name) {

this.name = name; // adds 1 property
// no explicit return needed

}
let furBall = new Dog("Rex") ;

Naming convention: Functions intended to be constructors
are capitalized

Example: Function

function Circle(x, y, radius) {
this.centerX = x;
this.centerY = y;
this.radius = radius;
this.area = function() {
return Math.PI * this.radius *

this.radius;

}
let ¢ = new Circle (10, 12, 2.45);

Computer Science and Engineering B

Creating a Circle Object

Computer Science and Engineering B The Ohio State University

let ¢ = new Circle (10, 12, 2.45);

Y
N,

s this.centerX = x;
"this.centerY =V,

Creating a Circle Object (2)

Computer Science and Engineering B The Ohio State University

let ¢ = new Circle (10, 12, 2.45);

oy
\

s this.centerX = x;
'"this.centerY = y;

Creating a Circle Object (3)

Computer Science and Engineering B The Ohio State University

let ¢ = new Circle (10, 12, 2.45);

Y
N,

s this.centerX
"this.centerY

centerY| 12

radius | 2.45

"return Math.PI * u
'this.radius *
nthis.radius i

---------l
=1
ﬂ
Q

)
'/

Creating a Circle Object (4)

Computer Science and Engineering B The Ohio State University

C[A } let ¢ = new Circle(10, 12, 2.45);

Y
N,

s this.centerX
"this.centerY

centerY| 12

"return Math.PI * u
'this.radius *
nthis.radius i

---------l
=1
ﬂ
Q

)
'/

Creating a Circle Object (5)

Computer Science and Engineering B The Ohio State University

C[& } let ¢ = new Circle(10, 12, 2.45);

Y
N,

s this.centerX
"this.centerY

centerY| 12

radius | 2.45

"return Math.PI * u
'this.radius *
nthis.radius i

---------l
=1
ﬂ
Q

)
'/

Creating Many Circle Objects (6)

Computer Science and Engineering B The Ohio State University

[& } for (let i = 0; i < 1000; i++) {

new Circle (0, 0, 1i);
Circle [Q }

s this.centerX
"this.centerY

centerY| 12

radius | 2.45

"return Math.PI *
'this.radius *

---------l
=1
ﬂ
Q

)
'/

Prototypes

1 Every object has a prototype
B A hidden, indirect property ([[Prototype]])

1 What is a prototype?
B Just another object! Like any other!

1 When accessing a property p (/.e. obj.p):
B First look for p in obj
B If not found, look for p in obj's prototype
B If not found, look for p in that object's prototype!

B And so on, until reaching the basic system object

ining

Prototype Cha

Computer Science and Engineering B The Ohio State University

toString

hasOwnProperty

- |

llhill

—-------------‘
4

pi

Class-Based Inheritance

- — extends

ST 2

static

S~

A\

interfaces extends
implements
classes [r—
s
static
ﬂ\ instantiates
objects [

(
L

A

static

Sy

IS
\

Prototype: Get vs Set of Property (Setup)

Comp

1 Consider two objects
let dog = { name: "Rex", age: 3 };
let pet = { color: "blue" };

1 Assume pet is dog's prototype

Delegation to Prototype

(A

s

r

Y ~
i
= i
) |
= I
0O i
= i
i
\ 4 —
— i
I O I
I o |
I O I
Y v
R
o d
AN
e g
o ©
C

Prototype: Get vs Set of Property

Computer Science e Ohio State University

O Consider two objects
let dog = { name: "Rex", age: 3 };
let pet = { color: "blue" };
0 Assume pet iS dog's prototype
// dog.name == ?
// dog.color == ?

pet.color = "brown";
// dog.color is °?
dog.color = '"green";

// dog.color is °?
// pet.color is °?

Prototype: Get vs Set of Property (Solutlon)

B The Ohio

O Consider two objects
let dog = { name: "Rex", age: 3 };
let pet = { color: "blue" };

0 Assume pet iS dog's prototype
// dog.name == "Rex"
// dog.color == "blue" (follow chain)
pet.color "brown"; // set in proto
// dog.color is '"brown" (prop changed)
dog.color = "green"; // set in object
// dog.color is ''green"
// pet.color is still "brown" (hiding)

Delegation to Prototype (2)

Computer Science and Engineering B The Ohio State University

(K] (A

r~ I e —————
I o :
| i <N ‘ 3!
:name "Rex" : : color "Hlye" I
: > J 1 | \ J :
" i N -]
| age| 3 |
! - ya
I I
I I
I I
I I
) I

dog.color == ?
// get follows prototype chain

Delegation to Prototype (3)

Computer Science and Engineering B The Ohio State University

dog[4 } pet [4 } pet.color = "brown";

// set changes object

r~ I e —————
I o I
| i <N ‘ 3!
:name "Rex" : : color "hrown" I
: > J 1 | \ J :
" i N -]
| age| 3 |!

! - N |

I I

I I

i |

I I dog.color == ?

// get follows prototype chain

Delegation to Prototype (4)

Computer Science and Engineering B The Ohio State University

dog[4 } pet [4 } dog.color = '"green";

// set changes object!

] S it
| : ' |
! ‘ Tl " 3!
iname "Rex" : : color "hrown" :
I I
| > A I S e)
| age 3 :
| > Q|
: C0|0r["green"} !
|
I : dog.color == ?

// get follows prototype chain

Prototypes Are Dynamic Too

O Prototypes can add/remove properties

O Changes are felt by all children
// dog is { name: '"Rex", age: 3 }
// dog.mood & pet.mood are undefined
pet.mood = "happy"; // add to pet
// dog.mood is now "happy" too
pet.bark = function() {

return ${this.name} is ${this.mood} ;

}
dog.bark(); //=> "Rex is happy"

pet.bark(); //=> "undefined is happy"

ience and Engineering B

e Ohio State Universi

Delegation to Prototype (5)

Computer Science and Engineering B The Ohio State University

dog.bark () ;
pet.bark() ;

s return .
H—'—)‘I: "S$S{this.name} is ::
n ${this.mood} ; u

Connecting Objects & Prototypes

B The Ohio State University

1 How does an object get a prototype?
let ¢ = new Circle();

1 Answer

1. Every function has a prototype property
O Do not confuse with hidden [[Prototype]]!

2. Object's prototype link— [[Prototype]] —is set to the
function's prototype property
1 When a function Foo is used as a constructor, Ji.e.
new Foo (), the value of Foo's prototype property is

the prototype object of the created object

Prototypes And Constructor

Computer Science and Engineering B The Ohio State University

‘)Il

prototype ‘

this.centerX
this.centerY
Etc ...

Prototypes And Constructors (2

Computer Science and Engineering B The Ohio State University

c = new Circle()

—~x1

prototype ‘

this.centerX
this.centerY
Etc ...

Prototypes And Constructors (3

Computer Science and Engineering B The Ohio State University

c = new Circle()

I |
! ! i , N
I I ! \ ,1h_%>
| I | e \I
! | ' area| A |1 _____ i
n=====-
: ! , s <1\\A. ;
1 : I l lE====2
| | | constructor * i
I I
| : vy sy
I I
L I
"============== -
]|)

N " prototype ‘

n this.centerX
n this.centerY
4 ... Bte ...

Prototypes And Constructors (4)

Computer Science and Engineering B The Ohio State University

c = new Circle()

T

centerX 10

centerY 12

Q
=
D
Q
2
. /\f! A
=%
1
1
1
1
=Y

radius | 2.45

@]
)
—
S, S ——
4
N

N ' prototype ‘

n this.centerX
n this.centerY
4 ... Bte ...

Idiom: Put Methods in Prototyp

Computer Science and Engineering B The Ohio State University

function Dog(n, a) {
this.name = n;
this.age = a;

this.bark = function(sound) {
return “~${this.name} says ${sound} ;

}
};

// bad: method is added to object itself

Method is in Object

Computer Science and Engineering B The Ohio State University

r = new Dog|() o9 PrototyPe ..
------------- = I
1 I
—Ia= i y===========cf=-==
Nname | "Rex" } :: ”

Y4

prototype

O
Q
=
~
Vg
:)
. X A
1

:return this.name

n+ '"says" + sound;
M= = o= o o o= oo o= o= o= o= o= ==

I--------ﬁ
Q
Q
M

Idiom: Methods in Prototype

function Dog(n, a) {
this.name = n;
this.age = a;

};

Dog.prototype.bark = function(sound) {
return ${this.name} says ${sound} ;

};

// good: add method to prototype

Idiom: Methods in Prototype (ES6)

class Dog {
constructor(n, a) {
this.name = n;
this.age = a;

}

tate University

bark (sound) {
return "S${this.name} says S${sound} ;

}

// best: ES6 class syntax

Methods in Prototype

Computer Science and Engineering B The Ohio State University

; Sl
, |

| J

, |

| : i

! | ! prototype

: L a ‘

| \)b . . .

I : ———————— $——-+---" ||return ::
e ——— 4+ “${this.name}

! says ${sound} ;,

Dog[A%\;: prototype \EE\

this.name = n; T
. this.age = a; T

Class With Instance Fields

Computer Science and Engineering B The Ohio State University

class Dog {
name = "Fur"; // property of object
age; // will be initialized by constructor

constructor (n, a) {
this.name = n;
this.age = a;

}

bark (sound) {
return " ${this.name} says ${sound} ;

}

Meaning of r instanceof Dog

Computer Science and Engineering B The Ohio State University

| .
! I

! J

! I

| : i

! | ! prototype

: L a ‘

| \)b . . .

I : ———————— $——-+---" ||return ::
e ——— 4+ “${this.name}

! says ${sound} ;,

Dog [A%* prototype \

y th%s.name = . r. proto .constructor
::thls.age = aj; T == Dog -
n -

Idiom: Classical Inheritance

function Animal() { ... };
function Dog() { ... };

Dog.prototype = new Animal () ;
// create prototype for future dogs

Dog.prototype.constructor = Dog;
// set prototype's constructor
// properly (ie should point to Dog())

Computer Science and Engineering B The Ohio State Universi

Setting up Prototype Chains

Computer Science and Engineering B The Ohio State University

new Animal () // Dog.prototype

Prototype Chains

Computer Science and Engineering B The Ohio State University

1 instanceOf is checked transitively up the prototype

chain
r instanceOf Dog //=> true

r instanceOf Animal //=> true
r instanceOf Object //=> true

1 Q: Identify the following in the previous diagram
r. proto . proto .constructor

Dog.prototype. proto .constructor.prototype

Simple But Complicated

Computer Science and Engineering B The Ohio State University
JavaScript Object Layout [Hursh Jain/mollypages.org]

Functions Prototypes
(instances)
e __Proto_ e
.. = new Foo() .~ .
prototype -
function e
rototype
iFDD(J ¥ constructor P P
pr;c&tc&
i = new Object
," Jpet) _Proto__ e , nullL
o e e e)
WL _proto__
] prototype 19
i function By B
] Object() .
L] constructor
| N ot
| (Object created by _prc; °—
Function)
.:: _--_pr"oto__
{Foo' created . prototype .
by Function) function Function.
i i rototype
/ Function() | P yp
{ ¥ constructor

: 44

