JavaScript:

DOM and Events (Continued)

Comp

Lecture 28

Interactive Documents

Computer Science and Engineering B The Ohio State University

1 To make a document interactive, you need:
B Widgets (ie HTML elements)

O Buttons, windows, menus, etc.
B Events

O Mouse clicked, window closed, button clicked, etc.
B Event listeners

O Listen (ie wait) for events to be triggered, and then perform
actions to handle them

Events Drive the Flow of Control

Com ing B The Ohio State University

1 This style is event driven programming

1 Event handling occurs as a loop:
B Program is idle

B User performs an action

O Eg moves the mouse, clicks a button, types in a text box,
selects an item from menu, ...

B This action generates an event (object)

B That event is sent to the program, which responds
O Code executes, could update document

B Program returns to being idle

Handling Events Mechanism

Computer Science and Engineering B The Ohio State University

[hree parts of the event-handling
mechanism

B FEvent source: the widget with which the user
interacts

B Event object: encapsulated information about the
occurred event

B FEvent listener: a function that is called when an
event occurs, and responds to the event

Simple Example: Color Swaps

Co d Engineering B The Ohio State University

<p>This page illustrates changing colors</p>
<form>
<p>
<label> background:
<input type="text" name="back" size="10"
onchange="modifyColor ('bg', this.wvalue)" />
</label>

<label> foreground:
<input type="text" name="fore" size="10"
onchange="modifyColor('fg', this.value)" />
</label>
</p>
</form>

Color Swaps (JavaScript)

Computer Science and Engineering B The Ohio State University

function modifyColor (place, color) {
if (place === "bg")
document.body.style.backgroundColor = color;
else

document.body.style.color = color;

Event Propagation

1 Elements are nested in tree

1 When an event occurs, which element’'s handler(s)
is(are) notified?

1 First, propagation path is calculated: from root to
smallest element

1 Then event dispatch occurs in 3 phases

1. Capture (going down the path)

2. Target (smallest element)
3. Bubble (going up the path, reverse of 1)

http://www.w3.0rg/TR/DOM-Level-3-Events/

Computer Science and Engineering B The Ohio State University

I’— DefaultView <
‘ Lr')
\‘b /

~— | Document | =~

. *
\‘ ’/l
-~ | <html> | =
/ 1'\\

Capture \‘)

Phase =| <body> | =~

1) e

S _J _
l/"‘ <table> ‘ Bubbhng
\ N Phase
\ J (3)
,— | <tbody> i _____

Target
Phase

(2)

Over the River,

Charlie

<td>
Shady Grove Aeolian

Bubbling Up

Computer Science and Engineering B The Ohio State University

1 Handling is usually done in phase 2 and 3
1 Example: mouse click on hyperlink

Handler for <a> element displays a pop-up ("Are you sure
you want to leave?")
Once that is dismissed, event flows up to enclosing <p>

e
e

ement, then <div> then... etc. until it arrives at root
ement of DOM

T

nis root element (/.e. window) has a handler that loads

the new document in the current window

Programmer Tasks

1 Define a handler
B Easy, any function will do

1 Register handler
B Link (HTML) tree element with (JavaScript) function(s)

1 Invoke the handler when event occurs
B Ha! Not our job

1 Get information about triggering event
B Handler is invoked with a parameter: an event object

Registering an Event Handle

Computer Science and Engineering B

O Three techniques, ordered from:

1.

2.

B Oldest (most brittle, simplest) to
B Newest (most general)

Inline (set in the HTML itself)
..

Direct property (set in JavaScript)
let e = ... // find source element in tree
e.onclick = foo;

. Chained (set in JavaScript)

let e = .. // find source element in tree
e.addEventlListener ('"click", foo, false);

Inline Registration (pre DOM)

Computer Science and Engineering B The Ohio State University

Use HTML attributes (vary by element type)

B For window: onload, onresize, onunload,...

B Forms & elements: onchange, onblur, onfocus, onsubmit,...
B Mouse events: onclick, onmouseover, onmouseout,...

B Keyboard events: onkeypress, onkeyup,...

[he value of these attributes is JavaScript code to be
executed

B Normally just a function invocation

Example
..

Advantage: Quick, easy, universal
Disadvantage: mixes code with content

Direct Registration (DOM 1)

Computer Science and Engineering B The Ohio State University

Use properties of DOM element objects
B onchange, onblur, onfocus,...

B onclick, onmouseover, onmouseout,...

B onkeypress, onkeyup,...

Set this property to appropriate handler
let e = .. // find source element in tree
e.onclick = foo;

Note: no parentheses!
e.onclick () = foo; // what does this do?
e.onclick = foo(); // what does this do?

Disadvantage? No arguments to handler

B Not a problem, handler gets event object

Real disadvantage: 1 handler/element

Example: Mouse Events

Computer Science and Engineering B The Ohio State University

let divs = document.querySelectorAll ("div");
for (let d of divs) {
d.onmouseover = function|() {

1A red"

this.style.backgroundColor
}
d.onmouseout = function () {
this.style.backgroundColor = "blue"
} // *this* will be the element (div)
// that listener is registered with

Handler Registration in DOM

Computer Science and Engineerin,

1 Each element has a collection of handlers

1 Add/remove handler to this collection
let e = .. // find source element in tree

e.addEventlListener ("click", foo);
1 First parameter: event name

B Note: no "on" in event names, ie just "elick

1 Second parameter: handler function
B This function takes an argument: event

1 Third parameter: handling phase
B Default is false (target or bubbling phase)
B For capture phase (unusual) use true

ing B The Ohio State Universi

Example: Clicks

Computer Science and Engineering B The Ohio State University

let divs = document.querySelectorAll ("div");
for (let d of divs) {
d.addEventListener ('"click'",
function (event) {
this.activated = this.activated || false;
this.activated = !'this.activated;
this.style.backgroundColor =
(this.activated ? "red" : "gray'")

})

Pitfall: Wrong this with =>

Computer Science and Engineering B The Ohio State University

let divs = document.querySelectorAll ("div");
for (let d of divs) {
d.addEventListener ('"click'",
(event) => { // wrong this
this.activated = this.activated || false;
this.actitvate = 'this.activated;
this.style.backgroundColor =
(this.activated ? "red" : "gray'")

})

Better: Use event Argument

let divs = document.querySelectorAll ("div");
for (let d of divs) {
d.addEventListener ('"click'",

(event) => { // use parameter, not this
let t = event.currentTarget;
t.activated = t.activated || false;
t.activated = !'t.activated;
t.style.backgroundColor =

(t.activated ? "red" : "gray");

}) s

ineering M The Ohio State Universi

ty

Summary: DOM, Events

1 DOM: Document Object Model

B Programmatic way to use document tree
B Get, create, delete, and modify nodes

1 Event-driven programming
B Source: element in HTML (a node in DOM)
B Handler: JavaScript function
B Registration: in-line, direct, chainec
B Event is available to handler for inspection

