
Computer Science and Engineering  College of Engineering  The Ohio State University

JavaScript:
DOM and Events (Continued)

Lecture 28

Computer Science and Engineering  The Ohio State University

Interactive Documents

 To make a document interactive, you need:
 Widgets (ie HTML elements)
 Buttons, windows, menus, etc.

 Events
 Mouse clicked, window closed, button clicked, etc.

 Event listeners
 Listen (ie wait) for events to be triggered, and then perform

actions to handle them

Computer Science and Engineering  The Ohio State University

Events Drive the Flow of Control

 This style is event driven programming
 Event handling occurs as a loop:
 Program is idle
 User performs an action
 Eg moves the mouse, clicks a button, types in a text box,

selects an item from menu, …
 This action generates an event (object)
 That event is sent to the program, which responds
 Code executes, could update document

 Program returns to being idle

Computer Science and Engineering  The Ohio State University

Handling Events Mechanism
 Three parts of the event-handling

mechanism
 Event source: the widget with which the user

interacts
 Event object: encapsulated information about the

occurred event
 Event listener: a function that is called when an

event occurs, and responds to the event

HTML Element aHandler()
event object

Computer Science and Engineering  The Ohio State University

Simple Example: Color Swaps
<p>This page illustrates changing colors</p>
<form>

<p>
<label> background:

<input type="text" name="back" size="10"
onchange="modifyColor('bg', this.value)" />

</label>

<label> foreground:

<input type="text" name="fore" size="10"
onchange="modifyColor('fg', this.value)" />

</label>
</p>

</form>

Computer Science and Engineering  The Ohio State University

Color Swaps (JavaScript)
function modifyColor(place, color) {
if (place === "bg")
document.body.style.backgroundColor = color;

else
document.body.style.color = color;

}

Computer Science and Engineering  The Ohio State University

Event Propagation

 Elements are nested in tree
 When an event occurs, which element's handler(s)

is(are) notified?
 First, propagation path is calculated: from root to

smallest element
 Then event dispatch occurs in 3 phases

1. Capture (going down the path)
2. Target (smallest element)
3. Bubble (going up the path, reverse of 1)

Computer Science and Engineering  The Ohio State University

http://www.w3.org/TR/DOM-Level-3-Events/

Computer Science and Engineering  The Ohio State University

Bubbling Up

 Handling is usually done in phase 2 and 3
 Example: mouse click on hyperlink
 Handler for <a> element displays a pop-up ("Are you sure

you want to leave?")
 Once that is dismissed, event flows up to enclosing <p>

element, then <div> then… etc. until it arrives at root
element of DOM

 This root element (i.e. window) has a handler that loads
the new document in the current window

Computer Science and Engineering  The Ohio State University

Programmer Tasks

 Define a handler
 Easy, any function will do

 Register handler
 Link (HTML) tree element with (JavaScript) function(s)

 Invoke the handler when event occurs
 Ha! Not our job

 Get information about triggering event
 Handler is invoked with a parameter: an event object

Computer Science and Engineering  The Ohio State University

Registering an Event Handler

 Three techniques, ordered from:
 Oldest (most brittle, simplest) to
 Newest (most general)

1. Inline (set in the HTML itself)
…

2. Direct property (set in JavaScript)
let e = … // find source element in tree
e.onclick = foo;

3. Chained (set in JavaScript)
let e = … // find source element in tree
e.addEventListener("click", foo, false);

Computer Science and Engineering  The Ohio State University

Inline Registration (pre DOM)
 Use HTML attributes (vary by element type)
 For window: onload, onresize, onunload,…
 Forms & elements: onchange, onblur, onfocus, onsubmit,…
 Mouse events: onclick, onmouseover, onmouseout,…
 Keyboard events: onkeypress, onkeyup,…

 The value of these attributes is JavaScript code to be
executed
 Normally just a function invocation

 Example
…

 Advantage: Quick, easy, universal
 Disadvantage: mixes code with content

Computer Science and Engineering  The Ohio State University

Direct Registration (DOM 1)
 Use properties of DOM element objects
 onchange, onblur, onfocus,…
 onclick, onmouseover, onmouseout,…
 onkeypress, onkeyup,…

 Set this property to appropriate handler
let e = … // find source element in tree
e.onclick = foo;

 Note: no parentheses!
e.onclick() = foo; // what does this do?
e.onclick = foo(); // what does this do?

 Disadvantage? No arguments to handler
 Not a problem, handler gets event object

 Real disadvantage: 1 handler/element

Computer Science and Engineering  The Ohio State University

Example: Mouse Events
let divs = document.querySelectorAll("div");
for (let d of divs) {
d.onmouseover = function() {
this.style.backgroundColor = "red"

}
d.onmouseout = function() {
this.style.backgroundColor = "blue"

} // *this* will be the element (div)
// that listener is registered with

}

Computer Science and Engineering  The Ohio State University

Handler Registration in DOM

 Each element has a collection of handlers
 Add/remove handler to this collection

let e = … // find source element in tree
e.addEventListener("click", foo);

 First parameter: event name
 Note: no "on" in event names, ie just "click"

 Second parameter: handler function
 This function takes an argument: event

 Third parameter: handling phase
 Default is false (target or bubbling phase)
 For capture phase (unusual) use true

Computer Science and Engineering  The Ohio State University

Example: Clicks
let divs = document.querySelectorAll("div");
for (let d of divs) {
d.addEventListener ("click",
function(event) {
this.activated = this.activated || false;
this.activated = !this.activated;
this.style.backgroundColor =
(this.activated ? "red" : "gray");

});
}

Computer Science and Engineering  The Ohio State University

Pitfall: Wrong this with =>
let divs = document.querySelectorAll("div");
for (let d of divs) {
d.addEventListener ("click",
(event) => { // wrong this
this.activated = this.activated || false;
this.actitvate = !this.activated;
this.style.backgroundColor =
(this.activated ? "red" : "gray");

});
}

Computer Science and Engineering  The Ohio State University

Better: Use event Argument
let divs = document.querySelectorAll("div");
for (let d of divs) {
d.addEventListener ("click",
(event) => { // use parameter, not this
let t = event.currentTarget;
t.activated = t.activated || false;
t.activated = !t.activated;
t.style.backgroundColor =
(t.activated ? "red" : "gray");

});
}

Computer Science and Engineering  The Ohio State University

Summary: DOM, Events

 DOM: Document Object Model
 Programmatic way to use document tree
 Get, create, delete, and modify nodes

 Event-driven programming
 Source: element in HTML (a node in DOM)
 Handler: JavaScript function
 Registration: in-line, direct, chained
 Event is available to handler for inspection

