
Computer Science and Engineering  College of Engineering  The Ohio State University

Rails:
Models

Lecture 29

Computer Science and Engineering  The Ohio State University

Rails Overview

Computer Science and Engineering  The Ohio State University

Architecture: Desktop App

User Interface

Application

Data

Graphical events
(mouse moves,
button pushed)

Processing,
Calculating

Persistence,
Transactions,
Triggers

Computer Science and Engineering  The Ohio State University

Model-View-Controller Pattern

 Model
 The data (i.e. state)
 Methods for accessing and modifying state

 View
 Renders contents of model for user
 When model changes, view must be updated

 Controller
 Translates user actions (i.e. interactions with view) into

operations on the model
 Example user actions: button clicks, menu selections

Computer Science and Engineering  The Ohio State University

Basic Interactions in MVC

Model

Controller

View

Input

Output

“change data”

“change
display”

“user
action”

“new state”

Computer Science and Engineering  The Ohio State University

Basic Web App Skeleton: 3-Tier

User Interface

Application

Data

http HTML, CSS, Javascript

SQL

Computer Science and Engineering  The Ohio State University

MVC in a Basic Web Application

 Model
 Database (table with rows)
 Classes that wrap database operations (class with

instances)
 View
 HTML (+ CSS, JavaScript) files rendered by client's

browser
 Skeleton files used by server to generate these HTML files

 Controller
 Receives HTTP requests via web server
 Orchestrates activity (model and view)

Computer Science and Engineering  The Ohio State University

MVC with Rails: Major Components

Computer Science and Engineering  The Ohio State University

MVC with Rails: More Details

Computer Science and Engineering  The Ohio State University

Directory Structure of Rails: MVC
depot/
..../app
......../controllers
......../helpers
......../models
......../views
............../layouts
..../bin
..../config
..../db
..../lib
..../log
..../public
..../storage
..../test
..../tmp
..../vendor
....Gemfile
....Rakefile
....README.md

Computer Science and Engineering  The Ohio State University

"Convention Over Configuration"

 Use naming & location conventions to wire
components together implicitly

 Explicit routing too, based on names and pattern
matching

 Contrast with:
 Configuration files (e.g., XML)
 Configuration code (e.g., Swing register listener)
 Configuration tools (e.g., IDEs to connect GUI widgets to

code snippets)

Computer Science and Engineering  The Ohio State University

Wiring Parts Together in Rails
 Example: Event  Controller wiring
 HTTP GET request for URL /say/hello gets routed to controller:

 Class called SayController
 File say_controller.rb in app/controllers
 Method hello

 Example: Controller  View wiring
 HTTP response formed from:

 File app/views/say/hello.html.erb
 Example: Model  Database wiring
 Class Order maps to database table "orders"
 Attributes of Order map to columns of table
 Instances of Order map to a rows of table

Computer Science and Engineering  The Ohio State University

Models in Rails Architecture

Computer Science and Engineering  The Ohio State University

Models in Rails Architecture (Alternate)

Computer Science and Engineering  The Ohio State University

Mapping Tables to Objects

 General strategy for OO languages
 Table in database -- a class
 Table columns -- attributes of the class
 Table rows -- instances of class (objects)

 Application works with database using ordinary
language syntax
 Class methods for finding row(s) in table

 Example: Java POJOs, Rails models

Computer Science and Engineering  The Ohio State University

Database Tables

 A database is a collection of tables
 Naming convention: Table names plural

 Each table has a list of columns
 Each column has a name and a type
 A table has a list of rows

buckid
(integer)

lname
(string)

fname
(string)

22352022PantaniMarco
334432CarneraPrimo
34822039Cher

students

Computer Science and Engineering  The Ohio State University

Models

 Programmatic way for application to interact with
database
 Model = a Ruby class
 Extends ApplicationRecord
 Found in app/models

 Each class corresponds to a table
 Note: Models are singular (tables are plural)
 Includes attributes corresponding to columns implicitly
class Post < ApplicationRecord

attr_accessible :author,:title,:cont
end

Computer Science and Engineering  The Ohio State University

Class Methods for Models
 Create a new instance with new

p1 = Post.new
p2 = Post.new author: 'Xi', title: 'Hola'
 Warning: this only creates the model (object) it does not

modify the database
 Create instance and add it to database

p3 = Post.create author: 'Zippy'
 Retrieve particular row(s) from table

p = Post.find 4 # search by id
p = Post.find_by author: 'Xi' # search by attribute
s = Student.find_by buckid: 543333
blog = Post.all
post = Post.first
post = Post.last

Computer Science and Engineering  The Ohio State University

Instance Methods for Models

 To save a model (object) as a row in the database
p = Post.new author: 'Xi'
p.save # commits change to database

 Read/write attributes like an ordinary Ruby class
p = Post.find_by author: 'Xi'
p.title #=> nil
p.title = 'A Successful Project'
p.save # don't forget to save!

 To delete a row from the table
p.destroy # no save needed

Computer Science and Engineering  The Ohio State University

Directory Structure of Rails: Models
depot/
..../app
......../controllers
......../helpers
......../models
......../views
............../layouts
..../bin
..../config
..../db
..../lib
..../log
..../public
..../storage
..../test
..../tmp
..../vendor
....Gemfile
....Rakefile
....README.md

Computer Science and Engineering  The Ohio State University

A Bit of Configuration
 Which database to use?
 SQLite is the easiest (no setup!)
 MySQL and PostgreSQL have better performance

 Different environments: development, test, production
 Default (for rake command) is development

 See config/database.yml
default: &default

adapter: sqlite3
pool: <%= ENV.fetch("RAILS_MAX_THREADS") {5} %>
timeout: 5000

development:
<<: *default
database: db/development.sqlite3

Computer Science and Engineering  The Ohio State University

Database Column Types

MySQLPostgresqlSQLite
blobbyteablob
tinyint(1)booleanboolean
datedatedate
datetimetimestampdatetime
decimaldecimaldecimal
floatfloatfloat
int(11)integerinteger
varchar(255)character

varying
varchar(255)

texttexttext
timetimedatetime
datetimetimestampdatetime

Computer Science and Engineering  The Ohio State University

Table Constraints

 Invariants on table entries beyond type information
 “lname is not null”
 “buckid is unique”

 Often useful to have a unique identifier for each row
(a primary key)
 Easy: Include an extra (integer) column
 Database responsible for assigning this value every time a

row is added
 No way to change this value after creation

Computer Science and Engineering  The Ohio State University

Primary Key With Autoincrement

buckid
(integer)

lname
(string)

fname
(string)

id
(key)

22352022PantaniMarco1
334432CarneraPrimo3
34822039Cher4

students

Computer Science and Engineering  The Ohio State University

Linking Tables

 Different tables can be related to each other
 “Each student has exactly 1 major”
 “Each student can own 1 (or more) vehicles”

 Keys are used to encode this relationship
 Include a column in table X containing keys from table Y

(foreign keys)
 For examples:
 Students table includes a column identifying a student's major
 Vehicles table includes a column identifying a (student) owner

 Association is an invariant between tables

Computer Science and Engineering  The Ohio State University

Association: Students & Vehicles

major
(foreign key)

buckid
(integer)

lname
(string)

fname
(string)

id
(key)

322352022PantaniMarco1
3334432CarneraPrimo3
334822039Cher4

students

license
(string)

owner
(foreign key)

id
(key)

K3F 443L11
F8L 220J42
GOHBUX46

vehicles

Computer Science and Engineering  The Ohio State University

Associations

vehicles
owner
(for. key)

id
(key)

11
42
46

students
major
(for. key)

id
(key)

31
33
34

programs
id
(key)
2
3
5
6
7

Computer Science and Engineering  The Ohio State University

Schema

 Definition of table structure
 Table name
 Column names and types
 Constraints

 Usually database manager-specific
 See db/schema.rb for Ruby-based schema

description
 Allows independence from particular DB manager
 Schema is versioned by timestamp (really by migration…)

Computer Science and Engineering  The Ohio State University

Example schema.rb
ActiveRecord::Schema.define(version:

2025_03_19_144259) do

create_table "students", force: :cascade do |t|
t.string "fname"
t.string "lname"
t.integer "buckid"
t.datetime "created_at", null: false
t.datetime "updated_at", null: false

end

end

Computer Science and Engineering  The Ohio State University

Migrations

 Q. Who writes schema.rb?
 A. It is generated!
 Golden rule: Never edit schema.rb directly
 Instead, write a migration

 A migration is Ruby code (a class) that represents a
change in schema
 Create new tables (including column names and column

types)
 Modify existing tables (adding/removing columns, or

changing associations)
 Delete (“drop”) existing tables

Computer Science and Engineering  The Ohio State University

Migration Classes

 See db/migrate
 Filename consists of
 Timestamp (UTC) of creation
 Class name (descriptive of delta)
 Example: class CreatePosts in

20230319145307_create_posts.rb
 Consequence: Migrations are run in a consistent order
 Deltas do not commute, so order is important

 Class extends ActiveRecord::Migration
 Contains method change
 This method invoked by rails db:migrate

Computer Science and Engineering  The Ohio State University

Example Migration Class
class CreatePosts < ActiveRecord::Migration

def change
create_table :posts do |t|
t.string :name
t.string :title
t.text :content

t.timestamps
end

end
end

Computer Science and Engineering  The Ohio State University

Result of Running This Migration

:updated_at
(datetime)

:created_at
(datetime)

:content
(text)

:title
(string)

:name
(string)

:id
(key)

:posts

Computer Science and Engineering  The Ohio State University

Column Type Mappings

MySQLPostgresqlSQLiteRubyMigration
blobbyteablobString:binary
tinyint(1)booleanbooleanBoolean:boolean
datedatedateDate:date
datetimetimestampdatetimeTime:datetime
decimaldecimaldecimalBigDecimal:decimal
floatfloatfloatFloat:float
int(11)integerintegerInteger:integer
varchar(255)character

varying
varchar(255)String:string

texttexttextString:text
timetimedatetimeTime:time
datetimetimestampdatetimeTime:timestamp

Computer Science and Engineering  The Ohio State University

Schema Deltas In Migrations
 In addition to creating tables, the change method can

also change existing tables
 Modify columns of an existing table

add_column, remove_column, rename_column, change_column

 Modify and delete tables
change_table, drop_table

 Example: xxx_add_author_to_posts.rb
class AddAuthorToPosts < ActiveRecord::Migration
def change
add_column :posts, :author, :string

end
end

Computer Science and Engineering  The Ohio State University

Migrations as History
 Change defined by migration can be undone
 Migrations give a linear history of deltas
 Schema is the result of applying them (in order)

 Can move forward/backward in history
 Create database only (no schema) defined in

config/database.yml
$ rails db:create

 Update schema.rb (compare its version number to list of
migrations) and apply to database
$ rails db:migrate

 Rollback schema.rb to earlier point in history
$ rails db:rollback

 Load schema defined in db/schema.rb
$ rails db:schema:load

Computer Science and Engineering  The Ohio State University

Schemas, Migrations, Models

schema.rb

migrations models

database.yml

database

db:create

db:schema:load

db:migrate

db:schema:dump

Computer Science and Engineering  The Ohio State University

Migrations vs Schema

 Golden rule: Never edit schema.rb
 It is regenerated every time you do a migration
 Every change in schema means writing a migration

 Commit schema.rb to version control
 Deployment in fresh environment means loading schema,

not reliving the full migration history
 Commit migrations to version control
 Once a migration has been shared, to undo it you should

create a new migration (preserve the linear history)

