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Rails Overview
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Architecture: Desktop App
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Model-View-Controller Pattern

 Model
 The data (i.e. state)
 Methods for accessing and modifying state

 View
 Renders contents of model for user
 When model changes, view must be updated

 Controller
 Translates user actions (i.e. interactions with view) into 

operations on the model
 Example user actions: button clicks, menu selections
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Basic Interactions in MVC
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Basic Web App Skeleton: 3-Tier

User Interface
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MVC in a Basic Web Application

 Model
 Database (table with rows)
 Classes that wrap database operations (class with 

instances)
 View
 HTML (+ CSS, JavaScript) files rendered by client's 

browser
 Skeleton files used by server to generate these HTML files

 Controller
 Receives HTTP requests via web server
 Orchestrates activity (model and view)
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MVC with Rails: Major Components
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MVC with Rails: More Details
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Directory Structure of Rails: MVC
depot/
..../app 
......../controllers
......../helpers 
......../models
......../views
............../layouts 
..../bin 
..../config
..../db
..../lib 
..../log 
..../public 
..../storage 
..../test 
..../tmp
..../vendor 
....Gemfile
....Rakefile
....README.md 



Computer Science and Engineering   The Ohio State University

"Convention Over Configuration"

 Use naming & location conventions to wire 
components together implicitly

 Explicit routing too, based on names and pattern 
matching

 Contrast with:
 Configuration files (e.g., XML)
 Configuration code (e.g., Swing register listener)
 Configuration tools (e.g., IDEs to connect GUI widgets to 

code snippets)
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Wiring Parts Together in Rails
 Example: Event  Controller wiring
 HTTP GET request for URL /say/hello gets routed to controller:

 Class called SayController
 File say_controller.rb in app/controllers
 Method hello

 Example: Controller  View wiring
 HTTP response formed from:

 File app/views/say/hello.html.erb
 Example: Model  Database wiring
 Class Order maps to database table "orders"
 Attributes of Order map to columns of table
 Instances of Order map to a rows of table



Computer Science and Engineering   The Ohio State University

Models in Rails Architecture
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Models in Rails Architecture (Alternate)
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Mapping Tables to Objects

 General strategy for OO languages
 Table in database -- a class
 Table columns -- attributes of the class
 Table rows -- instances of class (objects)

 Application works with database using ordinary 
language syntax
 Class methods for finding row(s) in table

 Example: Java POJOs, Rails models
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Database Tables

 A database is a collection of tables
 Naming convention: Table names plural

 Each table has a list of columns
 Each column has a name and a type
 A table has a list of rows

buckid
(integer)

lname
(string)

fname
(string)

22352022PantaniMarco
334432CarneraPrimo
34822039Cher

students
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Models

 Programmatic way for application to interact with 
database
 Model = a Ruby class
 Extends ApplicationRecord
 Found in app/models

 Each class corresponds to a table
 Note: Models are singular (tables are plural)
 Includes attributes corresponding to columns implicitly
class Post < ApplicationRecord

# attr_accessible :author,:title,:cont
end
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Class Methods for Models
 Create a new instance with new

p1 = Post.new
p2 = Post.new author: 'Xi', title: 'Hola'
 Warning: this only creates the model (object) it does not

modify the database
 Create instance and add it to database

p3 = Post.create author: 'Zippy'
 Retrieve particular row(s) from table

p = Post.find 4                # search by id
p = Post.find_by author: 'Xi'  # search by attribute
s = Student.find_by buckid: 543333
blog = Post.all
post = Post.first
post = Post.last
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Instance Methods for Models

 To save a model (object) as a row in the database
p = Post.new author: 'Xi'
p.save # commits change to database

 Read/write attributes like an ordinary Ruby class
p = Post.find_by author: 'Xi'
p.title #=> nil
p.title = 'A Successful Project'
p.save # don't forget to save!

 To delete a row from the table
p.destroy # no save needed
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Directory Structure of Rails: Models
depot/
..../app 
......../controllers 
......../helpers 
......../models
......../views 
............../layouts 
..../bin 
..../config
..../db
..../lib 
..../log 
..../public 
..../storage 
..../test 
..../tmp
..../vendor 
....Gemfile
....Rakefile
....README.md 
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A Bit of Configuration
 Which database to use?
 SQLite is the easiest (no setup!)
 MySQL and PostgreSQL have better performance

 Different environments: development, test, production
 Default (for rake command) is development

 See config/database.yml
default: &default

adapter: sqlite3 
pool: <%= ENV.fetch("RAILS_MAX_THREADS") {5} %> 
timeout: 5000 

development:
<<: *default
database: db/development.sqlite3
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Database Column Types

MySQLPostgresqlSQLite
blobbyteablob
tinyint(1)booleanboolean
datedatedate
datetimetimestampdatetime
decimaldecimaldecimal
floatfloatfloat
int(11)integerinteger
varchar(255)character 

varying
varchar(255)

texttexttext
timetimedatetime
datetimetimestampdatetime
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Table Constraints

 Invariants on table entries beyond type information
 “lname is not null”
 “buckid is unique”

 Often useful to have a unique identifier for each row 
(a primary key)
 Easy: Include an extra (integer) column
 Database responsible for assigning this value every time a 

row is added
 No way to change this value after creation
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Primary Key With Autoincrement

buckid
(integer)

lname
(string)

fname
(string)

id
(key)

22352022PantaniMarco1
334432CarneraPrimo3
34822039Cher4

students
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Linking Tables

 Different tables can be related to each other
 “Each student has exactly 1 major”
 “Each student can own 1 (or more) vehicles”

 Keys are used to encode this relationship
 Include a column in table X containing keys from table Y 

(foreign keys)
 For examples:
 Students table includes a column identifying a student's major
 Vehicles table includes a column identifying a (student) owner

 Association is an invariant between tables 
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Association: Students & Vehicles

major
(foreign key)

buckid
(integer)

lname
(string)

fname
(string)

id
(key)

322352022PantaniMarco1
3334432CarneraPrimo3
334822039Cher4

students

license
(string)

owner
(foreign key)

id
(key)

K3F 443L11
F8L 220J42
GOHBUX46

vehicles
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Associations

vehicles
owner
(for. key)

id
(key)

11
42
46

students
major
(for. key)

id
(key)

31
33
34

programs
id
(key)
2
3
5
6
7
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Schema

 Definition of table structure
 Table name
 Column names and types
 Constraints

 Usually database manager-specific
 See db/schema.rb for Ruby-based schema 

description
 Allows independence from particular DB manager
 Schema is versioned by timestamp (really by migration…)



Computer Science and Engineering   The Ohio State University

Example schema.rb
ActiveRecord::Schema.define(version:

2025_03_19_144259) do 

create_table "students", force: :cascade do |t|
t.string "fname" 
t.string "lname" 
t.integer "buckid" 
t.datetime "created_at", null: false 
t.datetime "updated_at", null: false 

end 

end 
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Migrations

 Q. Who writes schema.rb?
 A. It is generated!
 Golden rule: Never edit schema.rb directly
 Instead, write a migration

 A migration is Ruby code (a class) that represents a 
change in schema
 Create new tables (including column names and column 

types)
 Modify existing tables (adding/removing columns, or 

changing associations)
 Delete (“drop”) existing tables
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Migration Classes

 See db/migrate
 Filename consists of
 Timestamp (UTC) of creation
 Class name (descriptive of delta)
 Example: class CreatePosts in 

20230319145307_create_posts.rb
 Consequence: Migrations are run in a consistent order
 Deltas do not commute, so order is important

 Class extends ActiveRecord::Migration
 Contains method change
 This method invoked by rails db:migrate
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Example Migration Class
class CreatePosts < ActiveRecord::Migration

def change
create_table :posts do |t|
t.string :name
t.string :title
t.text :content

t.timestamps
end

end
end
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Result of Running This Migration

:updated_at
(datetime)

:created_at
(datetime)

:content
(text)

:title
(string)

:name
(string)

:id
(key)

:posts



Computer Science and Engineering   The Ohio State University

Column Type Mappings

MySQLPostgresqlSQLiteRubyMigration
blobbyteablobString:binary
tinyint(1)booleanbooleanBoolean:boolean
datedatedateDate:date
datetimetimestampdatetimeTime:datetime
decimaldecimaldecimalBigDecimal:decimal
floatfloatfloatFloat:float
int(11)integerintegerInteger:integer
varchar(255)character 

varying
varchar(255)String:string

texttexttextString:text
timetimedatetimeTime:time
datetimetimestampdatetimeTime:timestamp
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Schema Deltas In Migrations
 In addition to creating tables, the change method can 

also change existing tables
 Modify columns of an existing table

add_column, remove_column, rename_column, change_column

 Modify and delete tables
change_table, drop_table

 Example: xxx_add_author_to_posts.rb
class AddAuthorToPosts < ActiveRecord::Migration
def change
add_column :posts, :author, :string

end
end
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Migrations as History
 Change defined by migration can be undone
 Migrations give a linear history of deltas
 Schema is the result of applying them (in order)

 Can move forward/backward in history
 Create database only (no schema) defined in 

config/database.yml
$ rails db:create

 Update schema.rb (compare its version number to list of 
migrations) and apply to database
$ rails db:migrate

 Rollback schema.rb to earlier point in history
$ rails db:rollback

 Load schema defined in db/schema.rb
$ rails db:schema:load
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Schemas, Migrations, Models

schema.rb

migrations models

database.yml

database

db:create

db:schema:load

db:migrate

db:schema:dump
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Migrations vs Schema

 Golden rule: Never edit schema.rb
 It is regenerated every time you do a migration
 Every change in schema means writing a migration

 Commit schema.rb to version control
 Deployment in fresh environment means loading schema, 

not reliving the full migration history
 Commit migrations to version control
 Once a migration has been shared, to undo it you should 

create a new migration (preserve the linear history)


