Rails:

A . t . d V I . d t .
puter Science and Engineering B College of Engineering B The Ohio State University

Com;

Lecture 30

Recall: Schemas, Mlgratlons Models

Engineering B The

migrations models

db:create
db:migrate
db:schema:load
>
<€
db: schema : dump

database

Recall: Migrations

Computer Science and Engineering B The Ohio State University

class CreatePosts < ActiveRecord: :Migration
def change
create table :posts do |t]
t.string :name
t.string :title
t.text :content

t.timestamps
end
end
end

Recall: Models

Computer Science and Engineering B The Ohio State University

class Post < ApplicationRecord
attr accessible :name, :title, :content

end

Generating Code: rails generate

ngineering B The Ohio State University

Computer Science

Notice: Two blobs of Ruby code need to be in sync

B Migration (creates table and columns)
db/migrate/xxx create students.rb

B Model (with matching name)
app/models/student.rb

Easier: Generate both simultaneously
$ rails generate model Student
fname:string lname:string buckid:integer
B Use model name (singular) and attributes
B Note: this does not generate the schema.rb (use rails)

Migrations for table edits can also be generated
$ rails generate migration AddNickNameToStudent nick:string

B Name is meaningful! (starts with add or remove)
B Creates a migration that changes students table

Result of generate model

Computer Science and Engineering B The Ohio State University

class CreateStudents < ActiveRecord: :Migration
def change
create table :students do |t|
t.string :fname
t.string :lname
t.integer :buckid

t.timestamps
end
end
end

class Student < ApplicationRecord
end

Demo with rails console

S rails new demo # creates directory
no schema, migrations, or models

S cd demo

$ rails generate model Student \

fname:string lname:string buckid:integer
see db/migrate, app/models

S rails console

> Student.methods # lots available!

> Student.all # will this work?

> s = Student.new # will this work?

Computer Science and Engineering B The Ohio State Universi

Demo with rails console: Migration

Co

S rails new demo # creates directory

no schema, migrations, or models
S cd demo
$ rails generate model Student \
fname:string lname:string buckid:integer
raills console
Student.methods # lots available!
Student.find :all # empty, no table
s = Student.new # error, no table
rails db:migrate # creates schema.rb
rails console
Student.all #=> []

V& ¥»nV VYV ®n

e Ohio State Universi

Working With Models

> s = Student.new

> s2 = Student.new fname:

> s3 = Student.new fname:
buckid: 23

> Student.all #=> 2

|J0|

'Xi" ,

Working With Models: Result

> s = Student.new

> s2 = Student.new fname: 'Jo'

> s3 = Student.new fname: 'Xi',
buckid: 23

> Student.all #=> [] still

> S.save

> Student.all #=> [<id: 1, ..>]

> s.fname = 'Mary'

> S.save

Seeding the Database

Computer Science and Engineering B The Ohio State University

Quickly populate using config/seeds.rb
B $ rails db:seed # runs seeds.rb
B $ rails db:reset # drop then reseed

In db/seeds.rb:
30.times do
Student.create! (
buckid: Faker: :Number.unique
.number (digits: 9),

fname: Faker::Name.first name,
lname: Faker::Name.last name)

end

Useful gem: Faker
B Add to Gemfile: gem 'faker'
B $ bundle install

Associations (1:N Relationship)

Computer Science and Engineering B The Ohio State University

teams
i
(string)
1 Wicked Wicky
2 The Happy Crew
6 No Names
students
(key) | (integer)
1 22352022 2
3 334432 2

4 34822039 6

Invariants

Computer Science and Engineering B The Ohio State University

1 A student belongs to exactly 1 team
B Weaker: A student belongs to at most 1 team

1 Same representation for either invariant
B A column (of foreign keys) in students table

1 Maintaining stronger invariant

B Students can only be added with team_.id set to something
valid

B Deleting a team deletes member students!
1 Maintaining weaker invariant

B Students can be added with null team_id
B Deleting a team null-ifies members' team_id

Rails Migration and Models

Computer Science and Engineering B The Ohio State University

class AddTeamForeignKeys < ActiveRecord: :Migration

def change
add reference :students, :@team,
foreign key: true
end
end

class Student < ApplicationRecord
belongs to :team # note singular form
adds Student#team method
end

class Team < ApplicationRecord
has many :students # note plural form
adds Team#students method
end

Association Methods

Computer Science and Engineering B The Ohio State University

O Belongs_to creates method for accessing owner
s = Student.find 1 #=> 22352022

s.team #=> "The Happy Crew"
s.team.name = 'The(tm) Happy Crew'

O Has_many creates method for accessing members
t = Team.find 1

.students #=> array of students
.students.first

.students.size
.students.destroy all

of o o ot of

.students.any? { |s| ... }

Asymmetry in Writes to Assoc.

Computer Science and Engineering B The Ohio State University

Add a student to a team’s association: Student is
automatically saved (assuming team is stored in
database)

t = Team.find 1

t.students #=> []

t.students << Student.new # gets an id
t.students #=> [#<Student id: 1, ..>]

Assign a team student’s association: Student is not
automatically saved
s = Student.find 1

s.team = my team

s.reload #=> s's team is unchanged!

Modifiers for belongs to

class Student < ApplicationRecord
belongs to :greek house,
optional: true
allows foreign key to be null
belongs to :project group,
class name: 'Team'
default is ProjectGroup
belongs to :major,
foreign key: 'OSU code'
default is major id
belongs to :team,
touch: :membership updated
end

Modifiers for has_many

class Team < ApplicationRecord
has many :students,

limit: 5,
max number of members
dependent: :destroy,
what happens to students
when team is destroyed?
class name: 'OSUStudent’
default is Student

end

Computer Science and Engineering B

More Relationships

1 1:1 (one-to-one)
B Use belongs to with has one
O has_one is just has_many with limit of 1

B Same asymmetry in writing exists
1 N:M (many-to-many)

B A third, intermediary table is used with 2 columns (for
foreign keys from two tables)

B In rails, use has many :through association

Validations

Computer Science and Engineering B The Ohio State University

An invariant on data in a single table

B Every student has a (non-null) buckid

B Buckids are unique

B Team names are less than 30 characters

B Usernames match a given regular expression

[0 maintain invariant:
B Must be true initially
B Must be satisfied by each insertion

[hese validations are in the model
B A model instance can be checked

B Invalid objects can not be saved
student = Student.new lname: 'Vee'
student.valid? #=> false (no buckid)
student.save #=> false

Example

Computer Science and Engineering B The Ohio State University

class Post < ApplicationRecord

validates :name, presence: true
validates :title, presence: true,
length: { minimum: 35,
maximum: 50 }

end

Rails Implementation

Computer Science and Engineering B The Ohio State University

Model object has an errors attribute
B This attribute is a hash (of problems)

Failing a validity check adds an item to the errors hash
B Empty hash corresponds to valid object

B Each attribute is a key in the errors hash (plus there is a
general key, :base)

s.errors|:buckid] = "is not a number"

[he valid? method does the following:

B Empties errors hash

B Runs validations
B Returns errors.empty?

Validates Method in Model

Computer Science and Engineering B The Ohio State University

validates :column, condition
O Uniqueness
uniqueness: true
uniqueness: {message: 'Username already taken'}

O Non-nullness (not the same as truth, see next)
presence: {message: 'Title needed'}

O Truth of a boolean field
acceptance: {message: 'Accept the terms'}
O Matching a regular expression
format: {with: /[A-Z].*/, message: ..}
format: /[A-Za-z0-9]+/
O Being a number
numericality: {only integer: true}

O Having a length

length: {minimum: 5}

Alternative: Declarative Style

Co

e and Engineering B The Ohio State University

O Special methods for each flavor of validation
validates uniqueness of :username

validates presence of :password
validates acceptance of :@terms
validates format of :name,

with: /[A-Z].*/
validates numericality of :buckid,

only integer: true

Summary: Associations and Validations

Compu!

Code generation

B Database schema generated by schema.rb

B Schema.rb generated by rails on migrations

B Migrations and models can be generated by rails

Associations

B 1:N (or 1:1) relationships via foreign keys

B Rails methods belongs_to, has_many

B Create association attributes, which can be read and written
B Asymmetry in writing owner vs member

Validations

B Invariants checked before saving

B Errors hash contains list of problems

B Declarative style for common case checks
B Custom validity checkers possible too

