
Computer Science and Engineering  College of Engineering  The Ohio State University

Rails:
Associations and Validation

Lecture 30

Computer Science and Engineering  The Ohio State University

Recall: Schemas, Migrations, Models

schema.rb

migrations models

database.yml

database

db:create

db:schema:load

db:migrate

db:schema:dump

Computer Science and Engineering  The Ohio State University

Recall: Migrations
class CreatePosts < ActiveRecord::Migration
def change
create_table :posts do |t|
t.string :name
t.string :title
t.text :content

t.timestamps
end

end
end

Computer Science and Engineering  The Ohio State University

Recall: Models
class Post < ApplicationRecord

attr_accessible :name, :title, :content
end

Computer Science and Engineering  The Ohio State University

Generating Code: rails generate
 Notice: Two blobs of Ruby code need to be in sync
 Migration (creates table and columns)

db/migrate/xxx_create_students.rb
 Model (with matching name)

app/models/student.rb

 Easier: Generate both simultaneously
$ rails generate model Student

fname:string lname:string buckid:integer
 Use model name (singular) and attributes
 Note: this does not generate the schema.rb (use rails)

 Migrations for table edits can also be generated
$ rails generate migration AddNickNameToStudent nick:string
 Name is meaningful! (starts with add or remove)
 Creates a migration that changes students table

Computer Science and Engineering  The Ohio State University

Result of generate model
class CreateStudents < ActiveRecord::Migration
def change
create_table :students do |t|
t.string :fname
t.string :lname
t.integer :buckid

t.timestamps
end

end
end

class Student < ApplicationRecord
end

Computer Science and Engineering  The Ohio State University

Demo with rails console
$ rails new demo # creates directory

no schema, migrations, or models
$ cd demo
$ rails generate model Student \
fname:string lname:string buckid:integer

see db/migrate, app/models
$ rails console
> Student.methods # lots available!
> Student.all # will this work?
> s = Student.new # will this work?

Computer Science and Engineering  The Ohio State University

Demo with rails console: Migration
$ rails new demo # creates directory

no schema, migrations, or models
$ cd demo
$ rails generate model Student \
fname:string lname:string buckid:integer
$ rails console
> Student.methods # lots available!
> Student.find :all # empty, no table
> s = Student.new # error, no table
$ rails db:migrate # creates schema.rb
$ rails console
> Student.all #=> []

Computer Science and Engineering  The Ohio State University

Working With Models

> s = Student.new
> s2 = Student.new fname: 'Jo'
> s3 = Student.new fname: 'Xi',

buckid: 23
> Student.all #=> ?

Computer Science and Engineering  The Ohio State University

Working With Models: Result

> s = Student.new
> s2 = Student.new fname: 'Jo'
> s3 = Student.new fname: 'Xi',

buckid: 23
> Student.all #=> [] still
> s.save
> Student.all #=> [<id: 1, …>]
> s.fname = 'Mary'
> s.save

Computer Science and Engineering  The Ohio State University

Seeding the Database
 Quickly populate using config/seeds.rb
 $ rails db:seed # runs seeds.rb
 $ rails db:reset # drop then reseed

 In db/seeds.rb:
30.times do

Student.create!(
buckid: Faker::Number.unique

.number(digits: 9),
fname: Faker::Name.first_name,
lname: Faker::Name.last_name)

end
 Useful gem: Faker
 Add to Gemfile: gem 'faker'
 $ bundle install

Computer Science and Engineering  The Ohio State University

Associations (1:N Relationship)

students
team_id
(foreign key)

buckid
(integer)

id
(key)

2223520221
23344323
6348220394

teams
name
(string)

id
(key)

Wicked Wicky1
The Happy Crew2
No Names6

Computer Science and Engineering  The Ohio State University

Invariants

 A student belongs to exactly 1 team
 Weaker: A student belongs to at most 1 team

 Same representation for either invariant
 A column (of foreign keys) in students table

 Maintaining stronger invariant
 Students can only be added with team_id set to something

valid
 Deleting a team deletes member students!

 Maintaining weaker invariant
 Students can be added with null team_id
 Deleting a team null-ifies members' team_id

Computer Science and Engineering  The Ohio State University

Rails Migration and Models
class AddTeamForeignKeys < ActiveRecord::Migration
def change

add_reference :students, :team,
foreign_key: true

end
end

class Student < ApplicationRecord
belongs_to :team # note singular form

adds Student#team method
end

class Team < ApplicationRecord
has_many :students # note plural form

adds Team#students method
end

Computer Science and Engineering  The Ohio State University

Association Methods

 Belongs_to creates method for accessing owner
s = Student.find 1 #=> 22352022
s.team #=> "The Happy Crew"
s.team.name = 'The(tm) Happy Crew'

 Has_many creates method for accessing members
t = Team.find 1
t.students #=> array of students
t.students.first
t.students.size
t.students.destroy_all
t.students.any? { |s| ... }

Computer Science and Engineering  The Ohio State University

Asymmetry in Writes to Assoc.
 Add a student to a team’s association: Student is

automatically saved (assuming team is stored in
database)
t = Team.find 1
t.students #=> []
t.students << Student.new # gets an id
t.students #=> [#<Student id: 1, …>]

 Assign a team student’s association: Student is not
automatically saved
s = Student.find 1
s.team = my_team
s.reload #=> s's team is unchanged!

Computer Science and Engineering  The Ohio State University

Modifiers for belongs_to
class Student < ApplicationRecord

belongs_to :greek_house,
optional: true
allows foreign key to be null

belongs_to :project_group,
class_name: 'Team'
default is ProjectGroup

belongs_to :major,
foreign_key: 'OSU_code'
default is major_id

belongs_to :team,
touch: :membership_updated

end

Computer Science and Engineering  The Ohio State University

Modifiers for has_many

class Team < ApplicationRecord
has_many :students,
limit: 5,
max number of members
dependent: :destroy,
what happens to students
when team is destroyed?
class_name: 'OSUStudent'
default is Student

end

Computer Science and Engineering  The Ohio State University

More Relationships

 1:1 (one-to-one)
 Use belongs_to with has_one
 has_one is just has_many with limit of 1

 Same asymmetry in writing exists
 N:M (many-to-many)
 A third, intermediary table is used with 2 columns (for

foreign keys from two tables)
 In rails, use has_many :through association

Computer Science and Engineering  The Ohio State University

Validations
 An invariant on data in a single table
 Every student has a (non-null) buckid
 Buckids are unique
 Team names are less than 30 characters
 Usernames match a given regular expression

 To maintain invariant:
 Must be true initially
 Must be satisfied by each insertion

 These validations are in the model
 A model instance can be checked
 Invalid objects can not be saved
student = Student.new lname: 'Vee'
student.valid? #=> false (no buckid)
student.save #=> false

Computer Science and Engineering  The Ohio State University

Example
class Post < ApplicationRecord

validates :name, presence: true
validates :title, presence: true,

length: { minimum: 5,
maximum: 50 }

end

Computer Science and Engineering  The Ohio State University

Rails Implementation

 Model object has an errors attribute
 This attribute is a hash (of problems)

 Failing a validity check adds an item to the errors hash
 Empty hash corresponds to valid object
 Each attribute is a key in the errors hash (plus there is a

general key, :base)
s.errors[:buckid] = "is not a number"

 The valid? method does the following:
 Empties errors hash
 Runs validations
 Returns errors.empty?

Computer Science and Engineering  The Ohio State University

Validates Method in Model
validates :column, condition
 Uniqueness

uniqueness: true
uniqueness: {message: 'Username already taken'}

 Non-nullness (not the same as truth, see next)
presence: {message: 'Title needed'}

 Truth of a boolean field
acceptance: {message: 'Accept the terms'}

 Matching a regular expression
format: {with: /[A-Z].*/, message: …}
format: /[A-Za-z0-9]+/

 Being a number
numericality: {only_integer: true}

 Having a length
length: {minimum: 5}

Computer Science and Engineering  The Ohio State University

Alternative: Declarative Style

 Special methods for each flavor of validation
validates_uniqueness_of :username
validates_presence_of :password
validates_acceptance_of :terms
validates_format_of :name,

with: /[A-Z].*/
validates_numericality_of :buckid,

only_integer: true

Computer Science and Engineering  The Ohio State University

Summary: Associations and Validations
 Code generation
 Database schema generated by schema.rb
 Schema.rb generated by rails on migrations
 Migrations and models can be generated by rails

 Associations
 1:N (or 1:1) relationships via foreign keys
 Rails methods belongs_to, has_many
 Create association attributes, which can be read and written
 Asymmetry in writing owner vs member

 Validations
 Invariants checked before saving
 Errors hash contains list of problems
 Declarative style for common case checks
 Custom validity checkers possible too

