Rails:
Views and Controllers 11

Lecture 32

Computer Science and Engineering ®

Recall: Rails Architecture; Files, Locations

Computer Science and Engineering B The Ohio State University

app/

0 views/

course_roster/

app/ wake_up.html.erb

controllers/

course_roster_controller.rb
CourseRosterController

#wake up

GET /hi) T .io

Browser ‘

Recall: Wiring Views and Controllers

Computer Science and Engineering B The Ohio State University

O A controller is just an ordinary Ruby class
B Extends ApplicationController
class CourseRosterController <
ApplicationController
B Location: app/controllers/
B Filename: course roster controller.rb

O Actions are methods in that class
def wake up

end

O A view is an HTML page (kind of) that corresponds to that action
B Location: app/views/course roster/
B Filename: wake up.html.erb

B Has access to instance variables (e.g., @estudent) of corresponding
controller!

Recall: REST Routes and Wiring

Computer Science and Engineering B The Ohio State University

O For a resource like :students, the action pack includes
B 1 controller (StudentsController)

B 7/ routes (each with a method in controller)
B 4 views (list all, show one, blank form, edit form)

HTTP Resource Response
Verb (View)

/students Collection Index list all
POST /students Collection create show one
GET /students/new Collection new blank form
GET /students/3 Member show show one
GET /students/3/edit Member edit filled form
PUT /students/3 Member update show one

DELETE /students/3 Member destroy list all

Example: books/show.html.erb (Render)

<p style="color: green"><%= notice %></p>

<%= render @book %>

<div>
<%= link to "Edit this book",
edit book path(@book) %> |
<%= link to "Back to books", books path %>
<%= button to "Destroy this book", @book,

method: :delete %>
</div>

Example: books/index.html.erb

Computer Science and Engineering B The Ohio State University

<p style="color: green"><%= notice %></p>
<hl>Books</hl>

<div id="books">
<% @books.each do |book| %>
<%= render book %>
<%= link to "Show this book", book) %>
<% end %>
</div>

<%= link to "New book", new book path %>

Creating a Response

Computer Science and Engineering B The Ohio State University

[here are 3 ways a controller action can create the
HTTP response:

1. Do nothing: defaults are used

2. Call render method

3. Call redirect method

[he first results in HTTP status 200 (OK)
B Body of response is the HTML of the view

'he 3" results in HTTP status 302 (temporary
redirect)

Different formats for body of response are possible
(HTML, JSON, plain text...)

1: Default Response

Computer Science and Engineering B The Ohio State University

If the action does not call render (or redirect), then
render is implicitly called on corresponding view
class BooksController <

ApplicationController
def index
@books = Book.all
end

end

Results in call to render
app/views/books/index.html.erb

2. Explicitly Calling Render

Computer Science and Engineering B The Ohio State University

O Argument: action whose view should be rendered
def wake up
render :show # or render "show"
end
def show ...

B Action (show) does not get executed

O Action could be from another controller
render 'products/show'

O Can return text (or json or xml) directly
render plain: "OK"
render json: @book # calls to json
render xml: @book # calls to xml

O Note: render does not end action, so don't call it twice
(“double render error”)

3: Calling Redirect

Computer S

Sends response of an HTTP redirect (3xx)
B Default status: 302 (temporary redirect)

B Override for permanent redirection (301)
Consequence: client (browser) does another request,
this time to the URL indicated by the redirect response
B New request is a GET by default

Need URL, can use named route helpers

redirect to book url (@book)

redirect to books path

redirect to edit book path (@book)

redirect to @book # calls url for (@book)

Or :back to go back in (client’s) history

Redirect vs Render

Similarity
B Point to a different view

B Neither ends the action
render.. and return # force termination

Difference

B Redirect entails 2 round-trips: request action response;
request action response

B Redirect requires a URL as argument, Render takes a view
(action)

Common usage for Redirect: POST-Redirect-GET
pattern

GET Blank Form, POST the Form

Computer Science and Engineering B The Ohio State University

‘o] Quickroster - Chromium
@ Quickroster x + W
&« C @ localhost:3000/stu... < % % O &

Students GET "a blank form"

Fname: Marco

T mwwas Thamdand

Buckid: 34822039 <

Show this student

Q Quickroster - Chromium

@ Quickroster x -

€& > C @ localhost:3000/students/new <

POST /students

New student
lname: ..etc

Fname
| Galileo
Lname

Buckid
< | Create Student | s (

Back to students

GET Blank Form, POST the Form (2)

Computer Science and Engineering B The Ohio State University

Q Quickroster - Chromium

@ Quickroster X +

€& > C @ localhost:3000/students/new <

New student

Fname

| Galileo |

|Lname | POST /St'l.ldents
Buckid lname: ..etc

< | Create Student |)

Back to students

<

GET Blank Form, POST the Form (3)

Computer Science and Engineering B The Ohio State University

Q Quickroster - Chromium

@ Quickroster X -

€& > C @ localhost:3000/students/new <

New student

Fname

| Galileo |

|Lname | POST /St'l.ldents
Buckid lname: ..etc

< | Create Student |)

Back to students

o <

& Quickroster X -+

< C @ quickrosters.com/students/5

Student was successfully created.
Fname: Galileo

Lname:

Buckid:

Edit this student | Back to students
| Destroy this student |

GET Blank Form, POST the Form (4)

Computer Science and Engineering B The Ohio State University

Q Quickroster - Chromium

@ Quickroster X -

€& > C @ localhost:3000/students/new <

New student

Fname

| Galileo |

|Lname | POST /St'l.ldents
Buckid lname: ..etc

| Create Student |

Back to students

<

& Quickroster X -+

&« quickrosters.com/students/5

Student was successfully created.
Fname: Galileo

Lname:

Buckid:

Edit this student | Back to students
| Destroy this student |

POST-Redirect-GET Pattern

Computer Science and Engineering B The Ohio State University

User clicks

L _Z.] :
User fills out order - =
W~ susmrr

form.

" pPOST &

A "'\‘

:IIIIIIIII-IIII: - Imrtorder
Ean Redlrect: | intothe database.

. J
~

‘;"""" umrmﬁﬁhﬁﬂ?' o "assssummemmmmk
3 Resubmits

&
: GET uest
s | Send confirmation

FENEENEEENEE NN

: r A — -
v Your order G :| / 5. % W,
' was -_
~a

successful.

Example of POST-Redirect-GET

Computer Science and Engineering B The Ohio State University

class BooksController <

ApplicationController

def create
@book = Book.new(book params)
if @book.save
redirect to @book, # calls url for()
notice: 'Book successfully created'
else
render :new
end

end

Example of POST-Redirect- GET Notlce

Computer Sci ing @ The Ohio State Uni

class BooksController <

ApplicationController

def create

@book = Book.new(book params)
if @book.save

redirect to @book,

notice: 'Book successfully created'

else

render :new
end

end

Flash

A hash returned with redirect response

B Set by controller action issuing redirect
flash[:referral code] = 1234

B Common keys can be assigned in redirect
redirect to @book notice: '...'

redirect to books path alert: '...!
Flash included in client’s next request

Flash available to next action’s view!
<p id="info"><%= flash[:warn] %>..

B But: flash.now available to first view!
flash.now[:notice]l] = '"mo such book®

Computer Science and Engineering B

Flash: Set, Use, Clear

Computer Science and Engineering B The Ohio State University

User clicks

L _Z.] :
User fills out order - =
W~ susmrr

N
set flash

| Insertorder
| into the database.

use flash
(then clear)

L Your order
was

successful.

Using Flash in View

Computer Science and Engineering B The Ohio State University

display just notice message
<p id="notice"><%= notice %></p>

display all the flash messages
<% 1f flash.any? %>
<div id="banner">
<% flash.each do |key, message| %>
<div class="flash <%= key %>">
<%= message %>
</div>
<% end %>
</div>
<% end %>

Example of Render vs Redirect

Computer Science and Engineering B The Ohio State University

class BooksController <
ApplicationController

def update
@book = Book.find(params[:id])
if @book.update (book params)
redirect to @book,
notice: 'Book successfully updated’
else
render :edit
end
end

Why Is This Wrong?

Computer Science and Engineering B The Ohio State University

class BooksController <
ApplicationController

def update
@book = Book.find(params[:id])
if @book.update (book params)
redirect to @book,
notice: 'Book successfully updated’
else
render :edit,
notice: 'Try again.'
end
end

Fix: Use Flash.now

Computer Science and Engineering B The Ohio State University

class BooksController <
ApplicationController

def update
@book = Book.find(params[:id])
if @book.update (book params)
redirect to @book,
notice: 'Book successfully updated’
else
flash.now[:notice] = 'Try again.'
render :edit
end
end

Code Duplication

Computer Science and Engineering B The Ohio State University

class BooksController < ApplicationController

def show
@book = Book.find(params[:id])
end

def edit
@book = Book.find(params[:id])
end

def update
@book = Book.find(params[:id])

end

DRY, aka Single-Point-of-Control

Computer Science and Engineering B The Ohio State University

class BooksController < ApplicationController
before action :set book,
only %i[show edit update destroy]

def show # method is now empty!
end

def edit # method is now empty!
end

and other actions..

private
def set book
@book = Book.find(params[:id])
end
end

Sanatizing Inputs

Computer Science and Engineering B The Ohio State University

def update
if @book.update (book params)
redirect to @book, notice: 'Success!'
else
render :edit
end
end

private
def set book
@book = Book.find(params[:id])
end

def book params
params.require(:book) .permit(:title, :summary)
end

Recall Partials

Computer Science and Engineering B The Ohio State University

A blob of ERb used in multiple views

Examples
B Static header used throughout site
B Dynamic sidebar used in many places

Include in a template (or layout) with:

<%= render 'menu' %>

<%= render 'users/icon' %>

Filename of partial has "_" prefix

B Default location: app/views
app/views/ menu.html.erb

B Organize into subdirectories with good names
app/views/users/ icon.html.erb

Example: views/layouts/applic...

Computer Science and Engineering B The Ohio State University

<!DOCTYPE html>
<html>
. etc
<body>
<%= render 'layouts/header' %>

<div class="container">

)
<%

yield %>

)
<%

render 'layouts/footer' %>
</div>

</body>

</html>

Example: views/layouts/ footer

Computer Science and Engineering B The Ohio State University

<footer class="footer">
<small>
0SU
</small>
<nav>

<%= link to "About",
about path %></1li>
<%= link to "Contact",
contact path %></1li>

</nav>
</footer>

Recall: Tricks with Partials

Computer Science and Engineering B The Ohio State University

Content of partial can be customized with arguments
in call

In call: pass a hash called :locals
<%= render partial: "banner",

locals: { name: "Syllabus,

amount: @price } %>

In partial: access hash with variables
<h3> <%= name %> </h3>

<p> Costs <%= "$#{amount}.00" %></p>

Parameter Passing to Partials

Com

Partial also has one implicit local variable

In the partial, parameter name same as partial
in partial nav/ menu.html

<p> The price is: <%= menu %></p>

Argument value assigned explicitly
<%= render partial: 'mav/menu',

object: cost %>

Idiom: Begin partial by renaming this parameter
in partial nav/ menu.html

<% price = menu %>

Example: books/show.html.erb

<p style="color: green"><%= notice %></p>

<%= render @book %>

<div>
<%= link to "Edit this book",
edit book path(@book) %> |
<%= link to "Back to books", books path %>
<%= button to "Destroy this book", @book,

method: :delete %>
</div>

Partial: books/ book.html.erb

Computer Science and Engineering B The Ohio State University

<div id="<%= dom id book %>">
<p>
Title:
<%= book.title %>

</p>

<p>
Author:

<%= book.author %>

</p>

</div>

Demo: Scaffolding

Generate many things at once
Migration for table in database

Model for resource

RESTful routes

Controller and corresponding methods
Views for responses

Command

$ rails g scaffold Student lname:string buckid:integer

$ rails db:migrate

S rails server

Summary: Rendering, Scaffolding

Computer

Controller generates a response
Default: render corresponding view
Explicit: render some action's view
Explicit: re-direct

POST-redirect-GET (aka “get after post”)
Flash passes information to next action
Reuse of views with partials

B Included with render (e.g., <%= render...)
B Filename is prepended with underscore

B Parameter passing from parent template
B Can iterate over partial by iterating over a collection

