
Computer Science and Engineering  College of Engineering  The Ohio State University

Regular Expressions

Lecture 33

Computer Science and Engineering  The Ohio State University

Language

 Definition: a set of strings
 Examples
 ℒଵ = "cat", "dog", "fish"
 ℒଶ = 𝛼𝛽 𝛼 and 𝛽 are hex digits
 ℒଷ = 𝛼ଵ𝛼ଶ𝛼ଷ …𝛼௡ 𝑛 > 0 ∧ ∀௜ୀଵ௡ିଵ 𝛼௜ = 𝛼௜ାଵ

 Activity: For each ℒ above, find
 ℒ (the cardinality of the set)
 maxఙ∈ℒ 𝜎

Computer Science and Engineering  The Ohio State University

Programming Languages: Question

 Q: Are C, Java, Ruby, Python, … languages in this formal
sense?

Computer Science and Engineering  The Ohio State University

Programming Languages

 Q: Are C, Java, Ruby, Python, … languages in this
formal sense?

 A: Yes!
 ℒோ௨௕௬ is the set of well-formed Ruby programs
 What the interpreter (compiler) accepts
 The syntax of the language

 But what does one such string mean?
 The semantics of the language
 Not part of formal definition of “language”
 But necessary to know to claim “I know Ruby”

Computer Science and Engineering  The Ohio State University

Regular Expression (RE)

 A formal mechanism for defining a language
 Precise, unambiguous, well-defined

 In math, a clear distinction between:
 Characters in string (the “alphabet”)
 Metacharacters used to write a RE𝑎⋃𝑏 ∗𝑎 𝑎⋃𝑏 𝑎⋃𝑏 𝑎⋃𝑏

 In computer applications, there isn't
 Is '*' a Kleene star or an asterisk?

(a|b)*a(a|b)(a|b)(a|b)

Computer Science and Engineering  The Ohio State University

Literals

 A literal represents a character from the alphabet
 Some are easy:
 f, i, s, h, …

 Whitespace is hard (invisible!)
 \t is a tab (ascii 0x09)
 \n is a newline (ascii 0x0A)
 \r is a carriage return (ascii 0x0D)

 So the character '\' needs to be escaped!
 \\ is a \ (ascii 0x5c)

Computer Science and Engineering  The Ohio State University

Basic Operators

 () for grouping, | for choice
 Examples
 cat|dog|fish

 (h|H)ello

 R(uby|ails)

 (G|g)r(a|e)y

 These operators are meta-characters too
 To represent the literal: \(\) \|
 \(61(3|4)\)

 Activity: For each RE above, write out the corresponding
language explicitly (ie, as a set of strings)

Computer Science and Engineering  The Ohio State University

Character Class

 Set of possible characters
 (0|1|2|3|4|5|6|7|8|9) is annoying!

 Syntax: []
 Explicit list as [0123456789]
 Range as [0-9]

 Negate with ^ at the beginning
 [^A-Z] a character that is not a capital letter

 Activity: Write the language defined by
 Gr[ae]y

 0[xX][0-9a-fA-F]

 [Qq][^u]

Computer Science and Engineering  The Ohio State University

Character Class Shorthands
 Common
 \d for digit, ie [0-9]
 \s for whitespace, ie [\t\r\n]
 \w for word character, ie [0-9a-zA-Z_]

 And negations too
 \D, \S, \W (ie [^\d], [^\s], [^\w])
 Warning: [^\d\s] ≠ [\D\S]

 POSIX standard (& Ruby) includes
 [[:alpha:]] alphabetic character
 [[:lower:]] lowercase alphabetic character
 [[:digit:]] decimal digit (in any script)
 [[:xdigit:]] hexadecimal digit
 [[:space:]] whitespace including newlines

Computer Science and Engineering  The Ohio State University

Wildcards
 A . matches any character (almost)
 Includes space, tab, punctuation, etc
 But does not include newline

 So add . to list of metacharacters
 Use \. for a literal period

 Examples
 Gr.y

 buckeye\.\d

 Problem: What is RE for OSU email address for
everyone named Smith?
 Answer is not: smith\.\d@osu\.edu

Computer Science and Engineering  The Ohio State University

Repetition

 Applies to preceding thing (character, character
class, or () group)
 ? means 0 or 1 time
 * means 0 or more times (unbounded)
 + means 1 or more times (unbounded)
 {k} means exactly k times
 {a,b} means k times, for a ≤ k ≤ b

 More meta-characters to escape!
 \? * \+ \{ \}

Computer Science and Engineering  The Ohio State University

Examples

 colou?r

 smith\.[1-9]\d*@osu\.edu

 0[xX](0|[1-9a-fA-F][0-9a-fA-F]*)

 .*\.jpe?g

Computer Science and Engineering  The Ohio State University

Your Turn: RE

 (Language consisting of) strings that:
 Contain only letters, numbers, and _
 Start with a letter
 Do not contain 2 consecutive _'s
 Do not end with _

 Exemplars and counter-exemplars:
 EOF, 4Temp, Test_Case3, _class, a4_Sap_X, S__T_2

 Write the corresponding RE

Computer Science and Engineering  The Ohio State University

Your Turn: RE (Examples)

 (Language consisting of) strings that:
 Contain only letters, numbers, and _
 Start with a letter
 Do not contain 2 consecutive _'s
 Do not end with _

 Exemplars and counter-exemplars:
 EOF, 4Temp, Test_Case3, _class, a4_Sap_X, S__T_2

 Write the corresponding RE

Computer Science and Engineering  The Ohio State University

Finite State Automota (FSA)

 An FSA is an accepting machine
 Finite set of states
 Transition function (relation) between states based on next

character in string
 DFA vs NFA

 Start state (s0)
 Set of accepting states

 An FSA accepts a string if you can start in s0 and end
up in an accepting state, consuming 1 character per
step

Computer Science and Engineering  The Ohio State University

Example

 What language is defined by this FSA?

S0 S1

1 10

0

Computer Science and Engineering  The Ohio State University

Your Turn: FSA

 (Language consisting of) strings that:
 Contain only letters, numbers, and _
 Start with a letter
 Do not contain 2 consecutive _'s
 Do not end with _

 Exemplars and counter-exemplars:
 EOF, 4Temp, Test_Case3, _class, a4_Sap_X, S__T_2

 Write the corresponding FSA

Computer Science and Engineering  The Ohio State University

Your Turn: FSA (Answer)

Computer Science and Engineering  The Ohio State University

Fundamental Results

 Expressive power of RE is the same as FSA
 Expressive power of RE is limited
 Write a RE for “strings of balanced parens”
 ()(()()), ()(), (((()))), …
 (((, ())((), …

 Can not be done! (impossibility result)
 Take CSE 3321…

Computer Science and Engineering  The Ohio State University

REs in Practice

 REs often used to find a “match”
 A substring s within a longer string such that s is in the

language defined by the RE
(CSE|cse) ?3901

 Possible uses:
 Report matching substrings and locations
 Replace match with something else

 Practical aspects of using REs this way
 Anchors
 Greedy vs lazy matching

Computer Science and Engineering  The Ohio State University

Anchors

 Used to specify where matching string should be with
respect to a line of text

 Newlines are natural breaking points
 ^ anchors to the beginning of a line
 $ anchors to the end of a line
 Ruby: \A \z for beginning/end of string

 Examples
^Hello World$

\A[Tt]he

^[^\d].\.jpe?g

end\.\z

Computer Science and Engineering  The Ohio State University

Greedy vs Lazy
 Repetition (+ and *) means multiple matches might

begin at same place
 Example: <.*>
<h1>Title</h1>

<h1>Title</h1>

 The match selected depends on whether the
repetition matching is
 greedy, ie matches as much as possible
 lazy, ie matches as little as possible

 Default is typically greedy
 For lazy matching, use *? or +?

Computer Science and Engineering  The Ohio State University

Regular Expressions in Ruby
 Instance of a class (Regexp)

pattern = Regexp.new('^Rub.')

 But literal notation is common: /pattern/
/[aeiou]*/
%r{hello+} # no need to escape /

 Options post-pended: /pattern/options
 i ignore case
 x ignore whitespace, comments (“free spacing”)

 Match operator =~ (negated as !~)
 Operands: String and Regexp (in either order)
 Returns index of first match (or nil if not present)
'hello world' =~ /o/ #=> 4
/or/ =~ 'hello' #=> nil

 Case equality, Regexp === String,  Boolean

Computer Science and Engineering  The Ohio State University

Strings and Regular Expressions

 Find all matches as an array
s.scan /[[:alpha:]]/

 Delimeter for spliting string into array
s.split /[aeiou]/

 Substitution: sub and gsub (+/- !)
 Replace first match vs all (“globally”)
s = 'the quick brown fox'

s.sub /[aeiou]/, '@'

#=> "th@ quick brown fox"

s.gsub /[aeiou]/, '@'

#=> "th@ q@@ck br@wn f@x"

Computer Science and Engineering  The Ohio State University

Your Turn: REs in Ruby

 Check if phone number in valid format
phone = '614-292-2900' # bad

phone = '(614) 292-2900' # good

format = ? # replace ? with a RE

if phone ? format # replace ? with op

phone is well-formatted string

…

Computer Science and Engineering  The Ohio State University

Summary

 Language: A set of strings
 RE: Defines a language
 Recipe for making elements of language

 Literals
 Distinguish characters and metacharacters

 Character classes
 Represent 1 character in RE

 Repetition
 FSA
 Expressive power same as RE

