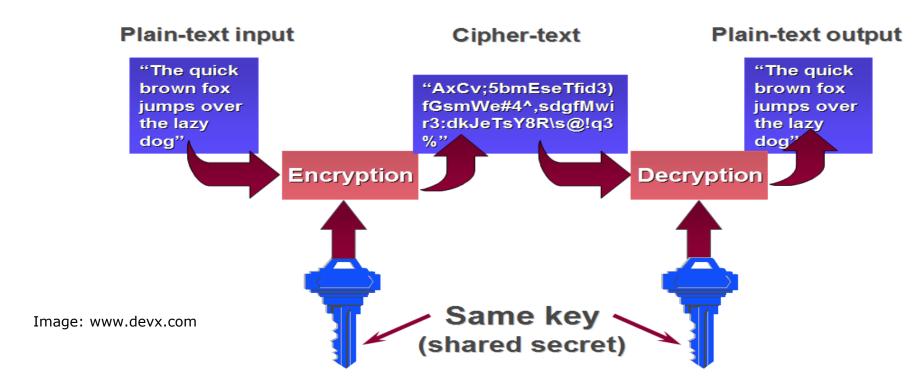
Security: Cryptography

Computer Science and Engineering ■ College of Engineering ■ The Ohio State University

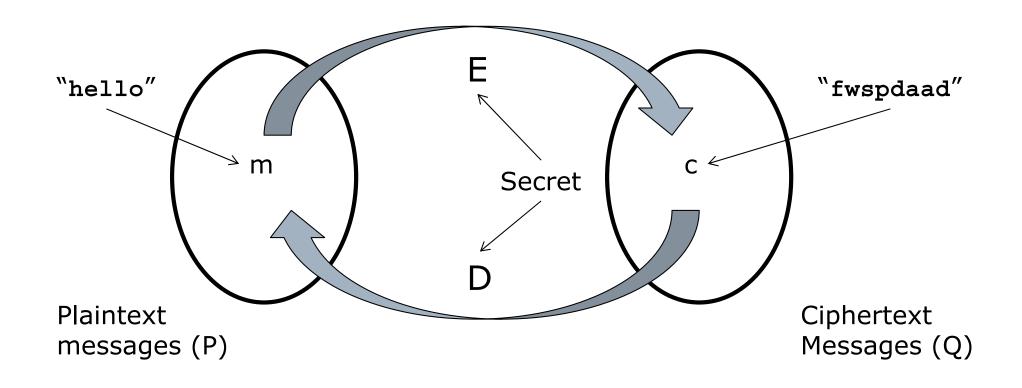
Lecture 38

Some High-Level Goals


- Confidentiality (aka Authorization)
 - Non-authorized users have limited access
- Integrity
 - Accuracy/correctness/validity of data
- Availability
 - No down-time or disruptions
- Authentication
 - Agents are who they claim to be
- Non-repudiation
 - A party to a transaction can not later deny their participation

- □ Target people ("social engineering")
 - Phishing: email, phone, surveys, ...
 - Baiting: click & install, physical media, ...
- □ Target software ("exploits")
 - Unpatched OS, browser, programs
 - Buffer overflow
 - Code injection and cross-site scripting
- □ Target channel ("man-in-the-middle")
 - Eavesdropping
 - Masquerading, tampering, replay

- □ Etymology (Greek)
 - kryptos: hidden or secret
 - *grapho*: write
- Basic problem:
 - 2 agents (traditionally "Alice" and "Bob")
 - A & B want to exchange private messages
 - Channel between A & B is not secure ("Eve" is eavesdropping)
- Solution has other applications too
 - Protect stored data (e.g. on disk, or in cloud)
 - Digital signatures for non-repudiation
 - Secure passwords for authentication


- ☐ Alice & Bob share some *secret*
 - Secret can not be the message itself
 - Secret used to protect arbitrary messages
- □ Crude analogy: a padlock
 - Copies of the physical key are the secret
 - Alice puts message in box and locks it
 - Bob unlocks box and reads message
- But real channels are bit streams
 - Eve can see the bits!
 - Message must be garbled in some way
 - Secret is strategy for garbling/degarbling

- □ Alice garbles (encrypts) the message
- Sends the encrypted cipher-text
- Bob knows how to degarble (decrypt) cipher-text back into plain-text

Encryption/Decryption Function

Computer Science and Engineering ■ The Ohio State University

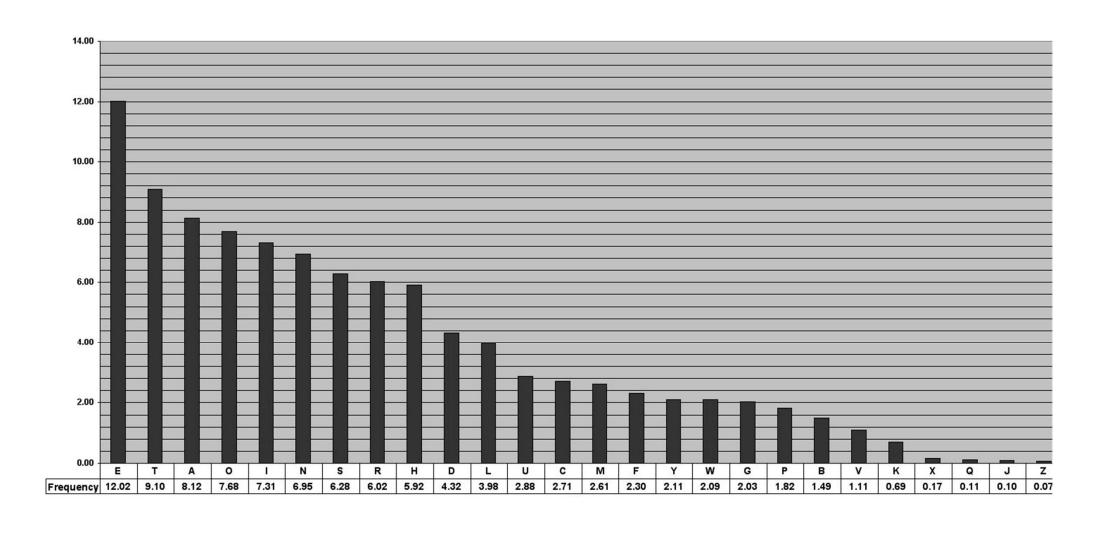
E: $P \rightarrow Q$ D: $Q \rightarrow P$

$$E(m) = c$$

 $D(c) = m$
i.e. $D = E^{-1}$

Note: often P = Q So E is a *permutation*

- Each pair of agents needs their own E
 - Many E's (& corresponding D's) needed
- But good E's are hard to invent
- Solution: design one (good) E, which is parameterized by a number
 - That is, have a huge *family* of E's: E_0 , E_1 , E_2 , ... E_K
 - Everyone knows the family of E's
 - \blacksquare Secret: which E_i is used (i is the key)


- □ Shift each letter by *x* positions in alphabet
 - Example: x = 3 $a \rightarrow d$, $b \rightarrow e$, $c \rightarrow f$, $d \rightarrow g$, $e \rightarrow h$, ...
 - \blacksquare The key is x
- Encode a string character-by-character
 - For m = ``hello world'', $E_3(m) = \text{``khoor zruog''}$
- Questions:
 - What is P (set of plaintext messages)?
 - What is Q (set of ciphertext messages)?
 - How many different ciphers?
 - Is this a strong or weak cipher?

Classic Example: Caesar Cipher (Solution)

- \square Shift each letter by x positions in alphabet
 - E.g. x = 3 $a \rightarrow d, b \rightarrow e, c \rightarrow f, d \rightarrow g, e \rightarrow h, ...$
 - \blacksquare The key is x
- Encode a string character-by-character
 - For m = ``hello world'', $E_3(m) = \text{``khoor zruog''}$
- Questions:
 - What is P (set of plaintext messages)?
 - □ The alphabet, ie {"a", "b", "c", "d", "e", ...}
 - What is Q (set of ciphertext messages)?
 - ☐ The alphabet, ie {"a", "b", "c", "d", "e", ...}
 - How many different ciphers?
 - □ 26
 - Is this a strong or weak cipher?
 - Weak: Just try all 26 possibilities

- Generalization: arbitrary mapping
 - Example: The qwerty shift $a \rightarrow s$, $b \rightarrow n$, $c \rightarrow v$, $d \rightarrow f$, $e \rightarrow r$, ...
 - For m = "hello world",
 E(m) = "jraap eptaf"
 - 26! possible ciphers... that's a lot!
 - \square Approximately 4 x 10²⁶
 - \square There are $\sim 10^{18}$ nanoseconds/century
- Weakness?

- Generalization: arbitrary mapping
 - Example: The qwerty shift $a \rightarrow s$, $b \rightarrow n$, $c \rightarrow v$, $d \rightarrow f$, $e \rightarrow r$, ...
 - For m = "hello world",
 E(m) = "jraap eptaf"
 - 26! possible ciphers... that's a lot!
 - □ Approximately 4 x 10²⁶
 - \square There are $\sim 10^{18}$ nanoseconds/century
- Weakness?
 - In English text, letters appear in predictable ratios
 - From enough ciphertext, can infer E

Leon Battista Alberti

WW II: Enigma Machine

- Alberti's idea: Use different E_i's within the same message
 - $E(\text{``hello world''}) = E_a(\text{``h''})E_b(\text{``e''})E_c(\text{``l''})E_d(\text{``l''})E_e(\text{``o''})...$
- ☐ Alice & Bob agree on the *sequence* of E's to use
- Claude Shannon proved that this method is perfectly secure (1949)
 - Precise information-theoretic meaning
 - Known as a one-time pad

Message is a sequence of bits

$$\mathbf{m}_0$$
 \mathbf{m}_1 \mathbf{m}_2 \mathbf{m}_3 \mathbf{m}_4 \mathbf{m}_5 $\mathbf{m}_{6...}$

One-time pad is random bit sequence

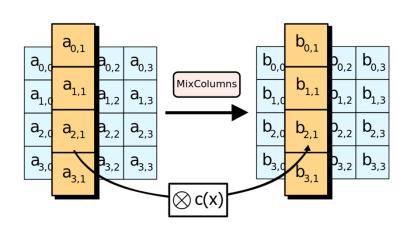
$$\mathbf{x}_0$$
 \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4 \mathbf{x}_5 $\mathbf{x}_{6...}$

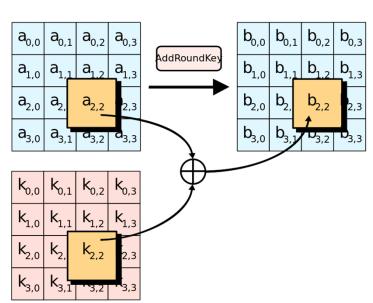
- □ E is bit-wise XOR operation, ⊕
- Cipher text is

```
\boldsymbol{m_0}^{\oplus}\boldsymbol{x_0} \ \boldsymbol{m_1}^{\oplus}\boldsymbol{x_1} \ \boldsymbol{m_2}^{\oplus}\boldsymbol{x_2} \ \boldsymbol{m_3}^{\oplus}\boldsymbol{x_3} \ \boldsymbol{m_4}^{\oplus}\boldsymbol{x_4} \ \boldsymbol{m_5}^{\oplus}\boldsymbol{x_5} \ \boldsymbol{m_6}^{\oplus}\boldsymbol{x_6}...
```

- Problem: Pad is long and cannot be re-used (hence cumbersome to share)
- In practice: pseudo-random sequence, generated from a seed (the key)
 - Not perfectly secure, in Shannon sense

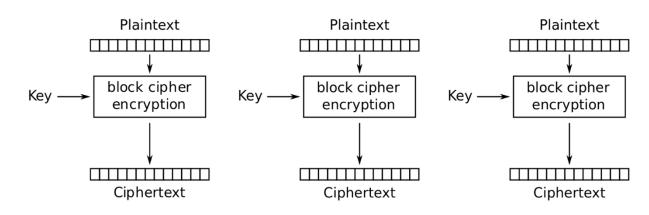
Stream Cipher

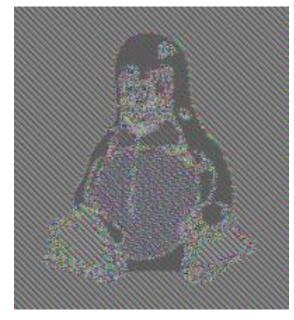

Encrypts bit-by-bit


- \Box |P| = |Q| = 2
- □ Few choices for E (roughly 2)
- Message can have any length

Block Cipher

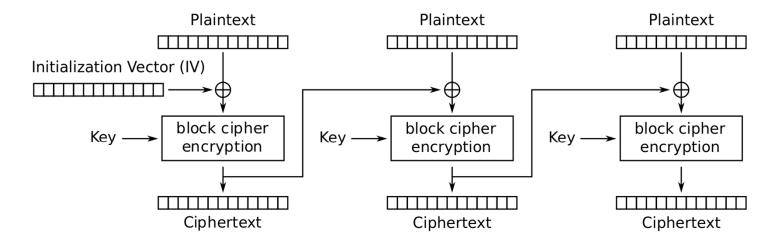
- \square Encrypts a fixed-length (k-bit) sequence
- $\Box |P| = |Q| = 2^k$
- □ Many choices for E (roughly $2^{k!}$)
- Padding added s.t. $|m| \mod k = 0$


- Advanced Encryption Standard (2001)
 - Replaced DES (1977)
- □ Block size always 128 bits (4x4 bytes)
- □ Key size is 128, 192, or 256 bits
- Multi-step algorithm, many rounds



Limitation of Fixed Block Size

- Message can be longer than block size
- □ Reuse same E for each block?
 - Danger: Frequency analysis vulnerability
 - Don't do this (for multiblock messages)!


Electronic Codebook (ECB) mode encryption

https://en.wikipedia.org/wiki/Image:Tux_ecb.jpg https://commons.wikimedia.org/wiki/File:Tux.jpg

Solution: Initialization Vector

- Add a random block to start
- Combine adjacent blocks to make ciphertext block
 - Many combination strategies (aka modes)

Cipher Block Chaining (CBC) mode encryption

Summary: Elements of Cryptography

- Cryptography
 - Encryption: Maps plaintext → ciphertext
 - Decryption is the inverse
- Symmetric-key encryption
 - Sender and receiver share (same) secret key
 - Stream ciphers work one bit at a time (e.g., one-time pad)
 - Block ciphers work on larger blocks of bits (e.g., AES)