Security: Cryptography II

Lecture 39



Symmetric Key

Computer Science and Engineering B The Ohio State University

For ciphers (so far): Knowing E is enough to figure
out D (its inverse)

B If you know how to encrypt, you can decrypt too
B Known as a symmetric key cipher

Example: Caesar cipher
mIfE(mMm)=m+ 3, D(m)=m-3
Example: One-time pad

B Use same pad and same operation (xor)

Example: AES
B Use same key, reverse rounds and steps




One-Way Functions

Computer Science and Engineering B The Ohio State University

For some functions, the inverse is hard to calculate

B One direction (P>Q) is easy, but opposite direction (Q—>P)
is hard/expensive/slow

Intuition:

B Given a puzzle solution, easy to design a puzzle with that
solution (the “forward” direction)

B Given the puzzle, hard to come up with the solution (the
“inverse” direction)




Example: Dominating Set

Computer Science and Engineering B The Ohio State University

Hard direction: Find a dominating set of size at most
6 in the following graph...

A Map of the Town of Iceberg




Example: Dominating Set (Solution)

State University

Easy direction: Create a graph with a dominating set
of size 6 from this forest...

L

The Secret Solution




Example: Factoring

Computer Science and Engineering B The Ohio State University

Multiplying numbers is easy (i.e. fast)
B Multiplying 2 n-bit nhumbers takes n? steps

Factoring a number is hard (i.e. slow)

B To factor an n-bit number, need 2" steps (approximately
the number’s value)

Aside:

B Primality testing is fast (recall lab activity in Software I
and Fermat’s Little Theorem)

B But this fast test doesn’t reveal the factors of a composite
number




Cryptographic Hash Functions

Co

A hash function: Z - Zg

B Fvery message, regardless of its length, maps to a number in
the range 0..B -1

B Result called a digest (constant-length, 1gB)

B Good hashes give uniform distribution:
small diff in message - big diff in digest

Cryptographic hash func’s are one-way

B Given a digest, computationally infeasible to find any m that
hashes to it

B Collisions must still exist (B « |messages|), but are infeasible to
find for large enough B

B Digest = a fingerprint of m (small, fixed-size)




Fixed-Length Digests

Computer Science and Engineering B The Ohio State University

cleartext MD5 digest

hello. world hash 22c3683b094136¢c3
; function > ®398391ae71b20f04

/

this is cleartext that

anybody can easily
read without the key hash / bd18d50263b01456 |

used by encryption. function > 1™ 2223ff0d003bE6

It's also bigger than

the box of text above.

This is some really /
long text that we always

mean to encrypt, and 128 bits

to keep these pearls
of wisdom out of the
reach of the bad guy.
We don't really know
>

how anybody could hash
ever break our rot13 function
encryption, but if the
NSA puts its mind to
it, perhaps they will
manage.

dd7ed8f8daccd8ee
ac348bade78d33ee

It's not an easy job
making up random
text for examples.




Crypto. Hash as Fingerprint

Computer Science and Engineering B The Ohio State University

Input Digest

cryptographic
FOX . haSh . DFCD 3454 BBEA 788A 751A
funCtion 696C 24D9 7009 CA99 2D17

The red fox cryptographic
jumps over haSh 0086 46BB FB7D CBE2 823C
the blue dog funCtion ACC7 6CD1 90B1 EEG6E 3ABC

The red fox cryptographic
jump I haSh . 8FD8 7558 7851 4F32 D1Cé
the blue Og funCtion 76B1 79A9 0DA4 AEFE 4819

The red fox cryptographic
Jump I haSh I FCD3 7FDB 5AF2 C6FF 915F
the blu s g funCtion D401 COA92 7D92A 46AF FB45

The red_fg cryptographic
.um @ | haSh I 8ACA D682 D588 4C75 4BF4
Jthe glue Og funCtion 17929 7D88 BCF8 92B92 6A6C




Common Cryptographic Hashes

Computer S

MD5

B Flaws discovered: “cryptographically broken’
B Do not use!

SHA-1: deprecated

B Windows, Chrome, Firefox reject (2017)

B 160-bit digests (i.e. 40 hex digits)

Replaced by SHA-2 (still common)

B A family of 6 different hash functions

B Digest sizes: 224, 256, 384, or 512 bits

B Names: SHA-224, SHA-256, SHA-512, etc
Current state-of-the-art is SHA-3

B Entirely different algorithm

B Names: SHA3-224, SHA3-256, SHA3-512, etc




Utility of Crypto. Hashes

Computer Science and Engineering B The Ohio State University

Integrity verification (super-checksum)
B File download, check digest matches

Password protection
B Server stores the hash of user’s password

B Check entered password by computing its hash and comparing
hash to the stored value

B Benefit: Passwords are not stored (directly) in the database! If
server is compromised, intruder finds hashes but not passwords

Problem:

B See md5decrypt.net/en/Sha256/
c023d5796452ad1d80263a05d11dc2a42b8c19c5d7c88c0e84ae3731b73a3d34




Role of Salt

Computer Science and Engineering B The Ohio State University

Danger:

B Intruder pre-computes hashes for many (common) passwords:
aka a rainbow table

B Scan stolen hashes for matches

Solution: salt
B Server prepends text to password before hashing
B Text must be unigue to user

B Text does not need to be secret
O Ok: Deterministic value based on user name
O Better: Random value, stored in the table

Protects the fingerprint, by making it not mass pre-
computable




One-Way Function with Trapdoor

Function appears to be one-way

B In reality, however, the inverse is easy if one knows a
secret (the “trapdoor”)

[here are two very different functions:
B The one-way-seeming function, E
B The trapdoor for its inverse, D

Knowing E is not enough to infer D
Creates an asymmetry:

B Alice knows E
B Bob (and only Bob) knows D




Asymmetry: Alice vs Bob

Alice

Hello

Bob! — " Encrypt «—— F

Computer Science and Engineering B The Ohio State Universi



Public-Key Encryption

Computer S

Algorithms for E and D known by all
B But parameterized by matched keys

Asymmetry
B Everyone knows key for Bob’s E (public)
B Only Bob knows key for Bob’s D (private)

Anyone can encrypt messages for Bob
Only Bob can decrypt these messages

Important consequences
B Each agent needs only 1 public key
B No pre-existing shared secret needed




Public and Private Keys

& _
(5.7 Alice
Hello

Bob! — Encrypt «—— ‘~

Computer Science and Engineering B The Ohio State Universi



RSA

E and D are actually the same function

m* mod n

B Parameterized by pair (k,n), i.e. the key
Private key: (d,n)

B D(m) =m*modn

Public key: (e,n)

B EF(m)=mfmodn

Choice of e & d is based on factoring
B Choose 2 large prime numbers, p and g
B Calculate their product, n = pg

B Pick any d relatively prime with (p-1)(g-1)
B Findanes.t.ed =1 mod (p-1)(g-1)

Computer Science and Engineering B The Ohio State Universi



Digital Signature

Usual direction for encryption:
D(E(m)) = (m¢€)? = me? = m, mod n
One-to-one, so backwards works too!
E(D(m)) = (m9)e = m9€ = m, mod n
Consider:

B Bob “encrypts” m using his private key, d
B Bob sends both m and D(m)

B Anyone can undo the “encrypted” part using Bob’s public key,
e

B Result will be m

D(m) serves as a digital signature of m
B Only Bob could have created this signature
B Use: non-repudiation



Performance Considerations

Computer Science and Engineering B The Ohio State University

Symmetric key algorithms are faster than public key
algorithms

Optimization for encryption (RSA)
B Create a fresh symmetric key, k

B Use symmetric algorithm to encrypt m
B Use recipient’s public key to encrypt k
Optimization for digital signatures

B Calculate the digest for m (always short)
B Use sender’s private key to encrypt digest




Take Home Message

Computer Science and Engineering B

Don’t try to roll your own crypto/security
implementation

Use (trusted) libraries

Recognize role and importance of (eq):
H Initialization vector

B Cryptographic hash/digest
B Salt

B Private key vs public key




Summary

One-way function
B Cryptographic hash creates a fingerprint

Public key encryption

— MatChing kGYS: kprivatel kpublic

B Anyone can use public key to encrypt

B Only holder of private key can decrypt

B Use private key to create a digital signature




