
Computer Science and Engineering  College of Engineering  The Ohio State University

Unicode and UTF-8

Lecture 41

A standard for the discrete
representation of written text

Computer Science and Engineering  The Ohio State University

The Big Picture: Sets

’m ф €
好

U+2019

U+20ACU+0444
U+006D U+5975

E2 82 AC
E5 A5 BD

E2 80 99

D1 84
6D

Apostrophe
Latin M

Cyrillic ef Euro sign
Tei chou ten

glyphs

code
points

code
units

characters

code unit

Computer Science and Engineering  The Ohio State University

The Big Picture: Mappings

glyphs

code
points

code
units

’m ф €
好

U+2019

U+20ACU+0444
U+006D U+5975

E2 82 AC
E5 A5 BD

E2 80 99

D1 84
6D

Apostrophe
Latin M

Cyrillic ef Euro sign
Tei chou tencharacters

Computer Science and Engineering  The Ohio State University

Glyphs vs Characters

glyphs A

Latin capital A
Greek capital alphacharacters Latin small E

e
e

e
e
e ee

Computer Science and Engineering  The Ohio State University

Text: A Sequence of Glyphs

 Glyph: “An individual mark on a written medium that
contributes to the meaning of what is written.”
 See foyer floor in main library

 One character can have different glyphs
 Example: Latin Small E could be e, e, e, e, e…

 One glyph can be different characters
 0 is both Digit Zero and (capital) Latin 0
 A is both (capital) Latin A and Greek Alpha

 One unit of text can consist of multiple glyphs
 An accented letter (é) is two glyphs
 The ligature of f+i (fi) is two glyphs

Computer Science and Engineering  The Ohio State University

Security Issue: Eyes Deceive

 Visual homograph: Two different characters that look
the same
 Would you click here: www.paypаl.com ?

Computer Science and Engineering  The Ohio State University

Security Issue: Eyes Deceive (Cont'd)

 Visual homograph: Two different characters that look
the same
 Would you click here: www.paypаl.com ?
 Oops! The second ‘a’ is actually CYRILLIC SMALL LETTER

A
 This site successfully registered in 2005

 Other examples: combining characters
 ñ = LATIN SMALL LETTER N WITH TILDE
 ñ = LATIN SMALL LETTER N + COMBINING TILDE

 “Solution”
 Heuristics that warn users when languages are mixed and

homographs are possible

Computer Science and Engineering  The Ohio State University

Unicode: Characters, Code Points

code
points U+2019

U+20ACU+0444
U+006D U+5975

Apostrophe
Latin M

Cyrillic ef Euro sign
Tei chou ten

glyphs
’m ф €

好

characters

code
units

E2 82 AC
E5 A5 BD

E2 80 99

D1 84
6D

Computer Science and Engineering  The Ohio State University

Unicode Code Points
 Each character is assigned a unique code point
 A code point is defined by an integer value, and is

given a name
 one hundred and nine (109, or 0x6d)
 LATIN SMALL LETTER M

 Convention: Write code points as U+hex
 Example: U+006D

 As of Sept '24, v16.0 (see unicode.org):
 Contains 154,998 code points

emoji-versions.html
 Covers 168 scripts (and counting…)

unicode.org/charts/

Computer Science and Engineering  The Ohio State University

Example Recent Addition (v11)

Computer Science and Engineering  The Ohio State University

Organization
 Code points are grouped into categories
 Basic Latin, Cyrillic, Arabic, Cherokee, Currency, Mathematical

Operators, …
 Unicode allows for 17 x 216 code points
 0 to 1,114,111 (i.e., > 1 million)
 U+0000 to U+10FFFF

 Each block of 216 code points is a plane
 U+nnnnnn, same green ==> same plane
 ~64,000 code points per plane

 Plane 0 is the basic multilingual plane (BMP)
 Has (practically) everything you could need
 Convention: code points in BMP written U+nnnn (ie 4 digits,

leading 0's if needed)
 Others code points written without leading 0's

Computer Science and Engineering  The Ohio State University

Basic Multilingual Plane

Computer Science and Engineering  The Ohio State University

Supplemental Plane (plane 1)

Computer Science and Engineering  The Ohio State University

UTF-8: Code Points & Octets

code
points U+2019

U+20ACU+0444
U+006D U+5975

glyphs
’m ф €

好

Apostrophe
Latin M

Cyrillic ef Euro sign
Tei chou tencharacters

code
units

E2 82 AC
E5 A5 BD

E2 80 99

D1 84
6D

Computer Science and Engineering  The Ohio State University

UTF-8
 Encodes each code point (integer) as a sequence of

bytes (octets)
 Variable length
 Some code points require 1 octet
 Others require 2, 3, or 4

 Consequence: Can not infer number of characters
from size of file!

 No endian-ness: a sequence of octets
D0 BF D1 80 D0 B8 D0 B2 D0 B5 D1 82...

 Other encodings exist!
 Eg UTF-16 uses 2 bytes per code point (more general

term: code unit)

Computer Science and Engineering  The Ohio State University

UTF-8 Encoding Recipe: 1 and 2-Bytes

 1-byte encodings
 First bit is 0
 Example: 0110 1101 (encodes U+006D)

 2-byte encodings
 First byte starts with 110…
 Second byte starts with 10…
 Example: 1101 0000 1011 1111
 Payload: 1101 0000 1011 1111

= 100 0011 1111
= 0x043F

 Code point: U+043F
i.e. п, Cyrillic small letter pe

Computer Science and Engineering  The Ohio State University

UTF-8 Encoding Recipe: Longer Encodings

 Generalization: An encoding of length k:
 First byte starts with k 1’s, then a 0
 Example 1110 0110 ==> first byte of a 3-byte encoding

 Subsequent k-1 bytes each start with 10
 Remaining bits are the payload

 Example: E2 82 AC
11100010 10000010 10101100

 Payload: 0x20AC (i.e., U+20AC, €)
 Consequence: Stream is self-synchronizing
 Losing a byte affects only one character

Computer Science and Engineering  The Ohio State University

UTF-8 Encoding Summary

(from wikipedia)

Computer Science and Engineering  The Ohio State University

Your Turn

 For the following UTF-8 encoding, what is the
corresponding code point(s)?
 F0 A4 AD A2

 For the following Unicode code point, what is its UTF-
8 encoding?
 U+20AC

Computer Science and Engineering  The Ohio State University

Security Issue: Multiplicity of Encodings
 Not all octet sequences are legal encodings
 “overlong” encodings are illegal
 example: C0 AF

= 1100 0000 1010 1111
= U+002F (encoding should be 2F)

 Classic security bug (IIS 2001)
 Should reject URL requests with “../..”

 Looked for 2E 2E 2F 2E 2E (in encoding)
 Accepted “..%c0%af..” (doesn’t contain x2F)

 2E 2E C0 AF 2E 2E is ok to allow through
 After accepting, server then decoded

 2E 2E C0 AF 2E 2E decoded into “../..”
 Moral: String is a sequence of code units
 But we care about code points

Computer Science and Engineering  The Ohio State University

Other (Older) Encodings: ASCII
 In the beginning…
 Character sets were small
 ASCII: only 128 characters (ie 27)
 1 byte/character, leading bit always 0

Computer Science and Engineering  The Ohio State University

ASCII: 128 Codes

6D = Latin small m

Computer Science and Engineering  The Ohio State University

Other (Older) Encodings: Code Pages
 In the beginning…
 Character sets were small
 ASCII: only 128 characters (ie 27)
 1 byte/character, leading bit always 0

 Globalization means more characters…
 But 1 byte/character seems fundamental

 Solutions:
 Use that leading bit!
 Text data now looks just like binary data
 256 characters

 Use more than 1 encoding!
 Must specify data + encoding used
 Each encoding gives 256 characters

Computer Science and Engineering  The Ohio State University

ISO-8859 family (eg -1 Latin)

0-7F match ASCII

reserved
(control characters)

A0-FF differ, eg:
-1 "Western"
-2 "East European"
-9 "Turkish

Computer Science and Engineering  The Ohio State University

Windows Family (eg 1252 Latin)

92 = apostrophe

Computer Science and Engineering  The Ohio State University

HTML 5 Standard

Computer Science and Engineering  The Ohio State University

Early Unicode and UTF-16
 Unicode started as 216 code points
 The BMP of modern Unicode
 Bottom 256 code points match ISO-8859-1

 Simple 1:1 encoding (UTF-16)
 Code point <--> 16-bit code unit (ie 2 bytes)
 Simple, but doubles storage needed for ASCII

 Later, code points outside of BMP added
 A pair of words (aka "surrogate pairs") carry 20-bit payload split, 10

bits in each word
 First: 1101 10xx xxxx xxxx (xD800-DBFF)
 Second: 1101 11yy yyyy yyyy (xDC00-DFFF)

 Consequence: U+D800 to U+DFFF became reserved code
points in Unicode
 And now we are stuck with this legacy, even for UTF-8

Computer Science and Engineering  The Ohio State University

Demo
 JavaScript uses UTF-16

let x = "\u{1f916}hi" // robot face + hi
x.length //=> 4 (number of code units)
x.charAt(0) //=> char from 1st code unit
x.charAt(2) // surprise?
[...x][2] // spread = linear time
{...x} // spreads code units

 Ruby supports multiple encodings
x = "\u{1f916}"
x.length
x.bytes.map { |b| b.to_s(2) }
x.encoding
x.encode! Encoding::UTF_16
x.bytes.map { |b| b.to_s(16) }

Computer Science and Engineering  The Ohio State University

Recall: Basic Multilingual Plane

Computer Science and Engineering  The Ohio State University

UTF-16 and Endianness
 A multi-byte representation must distinguish between

big & little endian
 Example: 00 25 00 25 00 25
 "%%%" if LE, "─ ─ ─" if BE

 One solution: Specify encoding in name
 UTF-16BE or UTF-16LE

 Another solution: require byte order mark (BOM) at the
start of the file
 U+FEFF (ZERO WIDTH NO BREAK SPACE)
 There is no U+FFFE code point
 So FE FF  BigE, while FF FE  LittleE
 Not considered part of the text

Computer Science and Engineering  The Ohio State University

BOM and UTF-8

 Should we add a BOM to the start of UTF-8 files too?
 UTF-8 encoding of U+FEFF is EF BB BF

 Advantages:
 Forms magic-number for UTF-8 encoding

 Disadvantages:
 Not backwards-compatible to ASCII
 Existing programs may no longer work
 E.g., In Unix, shebang (#!, i.e. 23 21) at start of file is

significant: file is a script
#! /bin/bash

Computer Science and Engineering  The Ohio State University

ZWJ: Zero Width Joiner

 Using U+FEFF as ZWNBSP deprecated
 Reserved for BOM uses (at start of file)

 Alternative: U+200D (“zwidge”)
 Joined characters may be rendered as a single glyph
 Co-opted for use with emojis

 Example: 1 character?
 U+1F3F4 U+200D U+2620
let x = "\u{1F3F4}\u{200D}\u{2620}"

 WAVING BLACK FLAG, ZWJ, SKULL AND CROSSBONES

Computer Science and Engineering  The Ohio State University

To Ponder: Simple Text
 What is a “text” file? (vs “binary” file)
 Given a file, how can you tell which it is?

 A JavaScript program reads in a 5MB file of ASCII text,
storing it in the string f
 How many characters are in f?
 How much memory does f occupy?

 How many characters are in string s?
let s = ... // a JavaScript string
console.assert(s.length == 7) // true

 Which is better: UTF-8 or UTF-16?
 What’s so scary about:

..%c0%af..

Computer Science and Engineering  The Ohio State University

Summary

 Text vs binary
 In pre-historic times: most significant bit
 Now: data is data

 Unicode code points
 Integers U+0000..U+10FFFF
 BMP: Basic Multilingual Plane

 UTF-8
 A variable-length, self-synchronizing encoding of unicode

code points
 Backwards compatible with ISO 8859-1, and hence with

ASCII too

